Externally Fired Evaporative Gas Turbine With a Condensing Heat Exchanger

Author(s):  
Jinyue Yan ◽  
Lars Eidensten ◽  
Gunnar Svedberg

The integration of externally fired gas turbines and evaporative gas turbines (e.g., the HAT cycle) can offer the features from both systems: using solid fuel without requiring particulate clean up to protect the gas turbine path, and having the potential to enhance the power output and increase the efficiency without including a bottoming steam turbine. Exhaust gases from externally fired evaporative gas turbines have a high moisture content. Using a condensing heat exchanger makes it possible to recover more exhaust heat, thereby providing more potential for improving the system performance. This paper presents a new system with integration of a condensing heat exchanger in an externally fired evaporative gas turbine. The first and second laws of thermodynamics have been used to analyze the system. This study extends the overall knowledge on the externally fired evaporative gas turbine system and provides an investigation of the system with a condensing heat exchanger.

2012 ◽  
Vol 134 (08) ◽  
pp. 50-50
Author(s):  
Lee S. Langston

This article describes the functioning of the gas turbine cogeneration power plant at the University of Connecticut (UConn) in Storrs. This 25-MW power plant serves the 18,000 students’ campus. It has been in operation since 2006 and is expected to save the University $180M in energy costs over its 40-year design life. The heart of the UConn cogeneration plant consists of three 7-MW Solar Taurus gas turbines burning natural gas, with fuel oil as a backup. These drive water-cooled generators to produce up to 20–24 MW of electrical power distributed throughout the campus. Gas turbine exhaust heat is used to generate up to 200,000 pounds per hour of steam in heat recovery steam generators (HRSGs). The HRSGs provide high-pressure steam to power a 4.6-MW steam turbine generator set for more electrical power and low-pressure steam for campus heating. The waste heat from the steam turbine contained in low-pressure turbine exhaust steam is combined with the HRSG low-pressure steam output for campus heating.


Author(s):  
V. L. Eriksen ◽  
J. M. Froemming ◽  
M. R. Carroll

Heat recovery boilers utilizing the exhaust from gas turbines continue to be viable as industrial cogeneration systems. This paper outlines the types of heat recovery boilers available for use with gas turbines (1–100 MW). It discusses the design and performance criteria for both unfired and supplementary fired gas turbine exhaust heat recovery boilers of single and multiple pressure levels. Equations to assist in energy balances are included along with design features of heat recovery system components. The economic incentive to achieve the maximum practical heat recovery versus the impact on boiler design and capital cost are examined and discussed. It is intended that the information presented in this paper will be of use to individuals who are not intimately familiar with gas turbine heat recovery systems so that they can better specify and evaluate potential systems.


Author(s):  
B. M. Burnside

The concept of the dual pressure steam/pure organic hybrid immiscible liquid cycle applied to recover exhaust heat from gas turbines is extended to include organic mixtures. Thermodynamics of the resulting ternary working fluid cycle is presented. For the cycle arrangement analysed it is calculated that the ternary steam/nonane/decane cycle with the organic very nonane rich produces about 2% more work than the corresponding all steam cycle for a typical gas turbine exhaust temperature. It is estimated that this advantage can be raised to about 4% by adding additional heaters at the stack end of the heat recovery generator. The analysis shows that it is unnecessary to use a pure alkane organic. A mixture containing up to about 5% of alkanes with higher boiling points than nonane is adequate.


1974 ◽  
Author(s):  
W. B. Wilson ◽  
W. J. Hefner

Energy costs can be reduced in most large process plants by the use of turbines to supply power and heat. Performance characteristics of gas turbines, gas turbine exhaust heat boilers and combined gas-steam turbine cycles, plus the typical heat balance diagrams included in this paper will help the reader visualize economic applications for turbines in different industrial plants. The effect different fuels have on gas turbine maintenance (costs and downtime) and other application parameters are included. The information provided will permit the user to assess his own situation and then select the most economic fuel for a specific gas turbine application.


Author(s):  
W. V. Hambleton

This paper represents a study of the overall problems encountered in large gas turbine exhaust heat recovery systems. A number of specific installations are described, including systems recovering heat in other than the conventional form of steam generation.


Author(s):  
Jie Gao ◽  
Feng Lin ◽  
Xiying Niu ◽  
Qun Zheng ◽  
Guoqiang Yue ◽  
...  

The marine gas turbine exhaust volute is an important component that connects a power turbine and an exhaust system, and it is of great importance to the overall performance of the gas turbine. Gases exhausted from the power turbine are expanded and deflected 90 degrees in the exhaust volute, and then discharge radially into the exhaust system. The flows in the power turbine and the nonaxisymmetric exhaust volute are closely coupled and inherently unsteady. The flow interactions between the power turbine and the exhaust volute have a significant influence on the shrouded rotor blade aerodynamic forces. However, the interactions have not been taken into account properly in current power turbine design approaches. The present study aims to investigate the flow interactions between the last stage of a shrouded power turbine and the nonaxisymmetric exhaust volute with struts. Special attention is given to the coupled aerodynamics and pressure response studies. This work was carried out using coupled computational fluid dynamics (CFD) simulations with the computational domain including a stator vane, 76 shrouded rotor blades, 9 struts and an exhaust volute. Three-dimensional (3D) unsteady and steady Reynolds-averaged Navier-Stokes (RANS) solutions in conjunction with a Spalart-Allmaras turbulence model are utilized to investigate the aerodynamic characteristics of shrouded rotors and an exhaust volute using a commercial CFD software ANSYS Fluent 14.0. The asymmetric flow fields are analyzed in detail; as are the unsteady pressures on the shrouded rotor blade. In addition, the unsteady total pressures at the volute outlet is also analyzed without consideration of the upstream turbine effects. Results show that the flows in the nonaxisymmetric exhaust volute are inherently unsteady; for the studied turbine-exhaust configuration the nonaxisymmetric back-pressure induced by the downstream volute leads to the local flow varying for each shrouded blade and low frequency fluctuations in the blade force. Detailed results from this investigation are presented and discussed in this paper.


2012 ◽  
Vol 134 (05) ◽  
pp. 32-37
Author(s):  
Lee S. Langston

This article explores the new developments in the field of gas turbines and the recent progress that has been made in the industry. The gas turbine industry has had its ups and downs over the past 20 years, but the production of engines for commercial aircraft has become the source for most of its growth of late. Pratt & Whitney’s recent introduction of its new geared turbofan engine is an example of the primacy of engine technology in aviation. Many advances in commercial aviation gas turbine technology are first developed under military contracts, since jet fighters push their engines to the limit. Distributed generation and cogeneration, where the exhaust heat is used directly, are other frontiers for gas turbines. Work in fluid mechanics, heat transfer, and solid mechanics has led to continued advances in compressor and turbine component performance and life. In addition, gas turbine combustion is constantly being improved through chemical and fluid mechanics research.


1974 ◽  
Author(s):  
Marv Weiss

A unique method for silencing heavy-duty gas turbines is described. The Switchback exhaust silencer which utilizes no conventional parallel baffles has at operating conditions measured attenuation values from 20 dB at 63 Hz to 45 dB at higher frequencies. Acoustic testing and analyses at both ambient and operating conditions are discussed.


2009 ◽  
Vol 13 (4) ◽  
pp. 41-48
Author(s):  
Zheshu Ma ◽  
Zhenhuan Zhu

Indirectly or externally-fired gas-turbines (IFGT or EFGT) are novel technology under development for small and medium scale combined power and heat supplies in combination with micro gas turbine technologies mainly for the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass or 'dirty' fuel by employing a high temperature heat exchanger to avoid the combustion gases passing through the turbine. In this paper, by assuming that all fluid friction losses in the compressor and turbine are quantified by a corresponding isentropic efficiency and all global irreversibilities in the high temperature heat exchanger are taken into account by an effective efficiency, a one dimensional model including power output and cycle efficiency formulation is derived for a class of real IFGT cycles. To illustrate and analyze the effect of operational parameters on IFGT efficiency, detailed numerical analysis and figures are produced. The results summarized by figures show that IFGT cycles are most efficient under low compression ratio ranges (3.0-6.0) and fit for low power output circumstances integrating with micro gas turbine technology. The model derived can be used to analyze and forecast performance of real IFGT configurations.


1978 ◽  
Author(s):  
C. F. McDonald

With soaring fuel costs and diminishing clean fuel availability, the efficiency of the industrial gas turbine must be improved by utilizing the exhaust waste heat by either incorporating a recuperator or by co-generation, or both. In the future, gas turbines for power generation should be capable of operation on fuels hitherto not exploited in this prime-mover, i.e., coal and nuclear fuel. The recuperative gas turbine can be used for open-cycle, indirect cycle, and closed-cycle applications, the latter now receiving renewed attention because of its adaptability to both fossil (coal) and nuclear (high temperature gas-cooled reactor) heat sources. All of these prime-movers require a viable high temperature heat exchanger for high plant efficiency. In this paper, emphasis is placed on the increasingly important role of the recuperator and the complete spectrum of recuperative gas turbine applications is surveyed, from lightweight propulsion engines, through vehicular and industrial prime-movers, to the large utility size nuclear closed-cycle gas turbine. For each application, the appropriate design criteria, types of recuperator construction (plate-fin or tubular etc.), and heat exchanger material (metal or ceramic) are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document