scholarly journals Variable Geometry Pipe Diffusers

Author(s):  
J. W. Salvage

Theoretical analyses and experimental results are reported for two unique variable geometry techniques used with pipe diffusers to enhance off-design performance. One technique mechanically closes the diffuser throat in an unusual manner. The other allows flow recirculation to close the throat artificially while attempting to improve diffuser inlet flow characteristics. Results clearly show that surge margin may be significantly improved by either method and that flow recirculation may offer improved efficiency.

1997 ◽  
Vol 119 (4) ◽  
pp. 831-838 ◽  
Author(s):  
J. W. Salvage

Theoretical analyses and experimental results are reported for two unique variable geometry techniques used with pipe diffusers to enhance off-design performance. One technique mechanically closes the diffuser throat in an unusual manner. The other allows flow recirculation to close the throat artificially while attempting to improve diffuser inlet flow characteristics. Results clearly show that surge margin may be significantly improved by either method and that flow recirculation may offer improved efficiency.


Author(s):  
Nikolaos Charalambous ◽  
Tiziano Ghisu ◽  
Giuseppe Iurisci ◽  
Vassilios Pachidis ◽  
Pericles Pilidis

The usual approach to compressor design considers uniform inlet flow characteristics. Especially in aircraft applications, the inlet flow is quite often non uniform, and this can result in severe performance degradation. The magnitude of this phenomenon is amplified in military engines due to the complexity of inlet duct configurations and the extreme flight conditions. CFD simulation is an innovative and powerful tool for studying inlet distortions and can bring this inside the very early phases of the design process. This project attempts to study the effects of inlet flow distortions in an axial flow compressor trying to minimize the use computer resources and computational time. The first stage of a low bypass ratio compressor has been analyzed and its clean and distorted performance compared outlining the principal changes due to uneven flow distribution: drop in mass flow, increase in pressure and temperature ratios, decrease in surge margin. Three different studies have then been conducted to better understand the effects of the level, the type and the frequency of the distortion.


1994 ◽  
Vol 29 (4) ◽  
pp. 127-132 ◽  
Author(s):  
Naomi Rea ◽  
George G. Ganf

Experimental results demonstrate bow small differences in depth and water regime have a significant affect on the accumulation and allocation of nutrients and biomass. Because the performance of aquatic plants depends on these factors, an understanding of their influence is essential to ensure that systems function at their full potential. The responses differed for two emergent species, indicating that within this morphological category, optimal performance will fall at different locations across a depth or water regime gradient. The performance of one species was unaffected by growth in mixture, whereas the other performed better in deep water and worse in shallow.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 881-896
Author(s):  
Chunrui Wu ◽  
Tiechen Zhang ◽  
Jiale Fu ◽  
Xiaori Liu ◽  
Boxiong Shen

Abstract In this article, lattice Boltzmann method (LBM) is used to simulate the multi-scale flow characteristics of the engine particulate filter at the pore scale and the representative elementary volume (REV) scale, respectively. Four kinds of random wall-pore structures are considered, which are circular random structure, square random structure, isotropic quartet structure generation set (QSGS), and anisotropic QSGS, with difference analysis done. In terms of the REV scale, the influence of different inlet flow velocities and wall permeabilities on the flow in single channel is analyzed. The result indicates that the internal seepage laws of random structures constructed in this article and single channel are in accordance with Darcy’s law. Circular random structure has better permeability than square random structure. Isotropic QSGS has better fluidity than anisotropic one. The flow in single channel is similar to Poiseuille flow. The flow lines in the channel are complicated and a large number of vortices appear at the ends of channel with high inlet flow rate. With the increase of inlet velocity, the static pressure in channel gradually increases along the axial direction as well as the seepage velocity. The temperature field in the channel becomes more uniform as the flow velocity increases, and the higher temperature distribution appears on the wall of the porous media.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1718
Author(s):  
Hasan Zobeyer ◽  
Abul B. M. Baki ◽  
Saika Nowshin Nowrin

The flow hydrodynamics around a single cylinder differ significantly from the flow fields around two cylinders in a tandem or side-by-side arrangement. In this study, the experimental results on the mean and turbulence characteristics of flow generated by a pair of cylinders placed in tandem in an open-channel flume are presented. An acoustic Doppler velocimeter (ADV) was used to measure the instantaneous three-dimensional velocity components. This study investigated the effect of cylinder spacing at 3D, 6D, and 9D (center to center) distances on the mean and turbulent flow profiles and the distribution of near-bed shear stress behind the tandem cylinders in the plane of symmetry, where D is the cylinder diameter. The results revealed that the downstream cylinder influenced the flow development between cylinders (i.e., midstream) with 3D, 6D, and 9D spacing. However, the downstream cylinder controlled the flow recirculation length midstream for the 3D distance and showed zero interruption in the 6D and 9D distances. The peak of the turbulent metrics generally occurred near the end of the recirculation zone in all scenarios.


2021 ◽  
Vol 40 (1) ◽  
pp. 551-563
Author(s):  
Liqiong Lu ◽  
Dong Wu ◽  
Ziwei Tang ◽  
Yaohua Yi ◽  
Faliang Huang

This paper focuses on script identification in natural scene images. Traditional CNNs (Convolution Neural Networks) cannot solve this problem perfectly for two reasons: one is the arbitrary aspect ratios of scene images which bring much difficulty to traditional CNNs with a fixed size image as the input. And the other is that some scripts with minor differences are easily confused because they share a subset of characters with the same shapes. We propose a novel approach combing Score CNN, Attention CNN and patches. Attention CNN is utilized to determine whether a patch is a discriminative patch and calculate the contribution weight of the discriminative patch to script identification of the whole image. Score CNN uses a discriminative patch as input and predict the score of each script type. Firstly patches with the same size are extracted from the scene images. Secondly these patches are used as inputs to Score CNN and Attention CNN to train two patch-level classifiers. Finally, the results of multiple discriminative patches extracted from the same image via the above two classifiers are fused to obtain the script type of this image. Using patches with the same size as inputs to CNN can avoid the problems caused by arbitrary aspect ratios of scene images. The trained classifiers can mine discriminative patches to accurately identify some confusing scripts. The experimental results show the good performance of our approach on four public datasets.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hossein Ahmadvand ◽  
Fouzhan Foroutan ◽  
Mahmood Fathy

AbstractData variety is one of the most important features of Big Data. Data variety is the result of aggregating data from multiple sources and uneven distribution of data. This feature of Big Data causes high variation in the consumption of processing resources such as CPU consumption. This issue has been overlooked in previous works. To overcome the mentioned problem, in the present work, we used Dynamic Voltage and Frequency Scaling (DVFS) to reduce the energy consumption of computation. To this goal, we consider two types of deadlines as our constraint. Before applying the DVFS technique to computer nodes, we estimate the processing time and the frequency needed to meet the deadline. In the evaluation phase, we have used a set of data sets and applications. The experimental results show that our proposed approach surpasses the other scenarios in processing real datasets. Based on the experimental results in this paper, DV-DVFS can achieve up to 15% improvement in energy consumption.


1993 ◽  
Vol 8 (9) ◽  
pp. 2344-2353 ◽  
Author(s):  
J-M. Berthelot ◽  
Souda M. Ben ◽  
J.L. Robert

The experimental study of wave attenuation in concrete has been achieved in the case of the propagation of plane waves in concrete rods. Different mortars and concretes have been investigated. A transmitter transducer coupled to one of the ends of the concrete rod generates the propagation of a plane wave in the rod. The receiver transducer, similar to the previous one, is coupled to the other end of the rod. The experimental results lead to an analytical expression for wave attenuation as function of the concrete composition, the propagation distance, and the wave frequency.


Robotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 68
Author(s):  
Lei Shi ◽  
Cosmin Copot ◽  
Steve Vanlanduit

In gaze-based Human-Robot Interaction (HRI), it is important to determine human visual intention for interacting with robots. One typical HRI interaction scenario is that a human selects an object by gaze and a robotic manipulator will pick up the object. In this work, we propose an approach, GazeEMD, that can be used to detect whether a human is looking at an object for HRI application. We use Earth Mover’s Distance (EMD) to measure the similarity between the hypothetical gazes at objects and the actual gazes. Then, the similarity score is used to determine if the human visual intention is on the object. We compare our approach with a fixation-based method and HitScan with a run length in the scenario of selecting daily objects by gaze. Our experimental results indicate that the GazeEMD approach has higher accuracy and is more robust to noises than the other approaches. Hence, the users can lessen cognitive load by using our approach in the real-world HRI scenario.


1948 ◽  
Vol 21 (4) ◽  
pp. 853-859
Author(s):  
R. F. A. Altman

Abstract As numerous investigators have shown, some of the nonrubber components of Hevea latex have a decided accelerating action on the process of vulcanization. A survey of the literature on this subject points to the validity of certain general facts. 1. Among the nonrubber components of latex which have been investigated, certain nitrogenous bases appear to be most important for accelerating the rate of vulcanization. 2. These nitrogen bases apparently occur partly naturally in fresh latex, and partly as the result of putrefaction, heating, and other decomposition processes. 3. The nitrogen bases naturally present in fresh latex at later stages have been identified by Altman to be trigonelline, stachhydrine, betonicine, choline, methylamine, trimethylamine, and ammonia. These bases are markedly active in vulcanization, as will be seen in the section on experimental results. 4. The nitrogenous substances formed by the decomposition processes have only partly been identified, on the one hand as tetra- and pentamethylene diamine and some amino acids, on the other hand as alkaloids, proline, diamino acids, etc. 5. It has been generally accepted that these nitrogenous substances are derived from the proteins of the latex. 6. Decomposition appears to be connected with the formation of a considerable amount of acids. 7. The production of volatile nitrogen bases as a rule accompanies the decomposition processes. These volatile products have not been identified. 8. The active nitrogen bases, either already formed or derived from complex nitrogenous substances, seem to be soluble in water but only slightly soluble in acetone.


Sign in / Sign up

Export Citation Format

Share Document