Measurements and Prediction of the Effects of Surface Roughness on Profile Losses and Deviation in a Turbine Cascade

Author(s):  
Richard J. Kind ◽  
Peter J. Serjak ◽  
Michael W. P. Abbott

Measurements of pressure distributions, profile losses and flow deviation were carried out on a planar turbine cascade in incompressible flow to assess the effects of partial roughness coverage of the blade surfaces. Spanwise oriented bands of roughness were placed at various locations on the suction and pressure surfaces of the blades. Roughness height, spacing between roughness elements, and band width were varied. A computational method based on the inviscid/viscous interaction approach was also developed; its predictions were in good agreement with the experimental results. This indicates that good predictions can be expected for a variety of cascade and roughness configurations from any 2-dimensional analysis which couples an inviscid method with a suitable rough surface boundary-layer analysis. The work also suggests that incorporation of the rough wall skin-friction law into a 3-D Navier-Stokes code would enable good predictions of roughness effects in 3-dimensional situations. Roughness was found to have little effect on static pressure distribution around the blades and on deviation angle, provided that it does not precipitate substantial flow separation. Roughness on the suction surface can cause large increases in profile losses; roughness height and location of the leading edge of the roughness band are particularly important. Loss increments due to pressure-surface roughness are much smaller than those due to similar roughness on the suction surface.

1998 ◽  
Vol 120 (1) ◽  
pp. 20-27 ◽  
Author(s):  
R. J. Kind ◽  
P. J. Serjak ◽  
M. W. P. Abbott

Measurements of pressure distributions, profile losses, and flow deviation were carried out on a planar turbine cascade in incompressible flow to assess the effects of partial roughness coverage of the blade surfaces. Spanwise-oriented bands of roughness were placed at various locations on the suction and pressure surfaces of the blades. Roughness height, spacing between roughness elements, and band width were varied. A computational method based on the inviscid/viscous interaction approach was also developed; its predictions were in good agreement with the experimental results. This indicates that good predictions can be expected for a variety of cascade and roughness configurations from any two-dimensional analysis that couples an inviscid method with a suitable rough surface boundary-layer analysis. The work also suggests that incorporation of the rough wall skin-friction law into a three-dimensional Navier–Stokes code would enable good predictions of roughness effects in three-dimensional situations. Roughness was found to have little effect on static pressure distribution around the blades and on deviation angle, provided that it does not precipitate substantial flow separation. Roughness on the suction surface can cause large increases in profile losses; roughness height and location of the leading edge of the roughness band are particularly important. Loss increments due to pressure-surface roughness are much smaller than those due to similar roughness on the suction surface.


Author(s):  
Pratik Mitra ◽  
Jahnavi Kantharaju ◽  
Rohan Rayan ◽  
Joseph Mathew

Large eddy simulations of tandem blade compressor cascades have been performed with an explicit filtering method. A low speed case was simulated using the public domain code Incompact3d which solves incompressible flow with an immersed boundary method for embedded solid bodies, obviating the effort expended on preparing good quality meshes around blading. The LES successfully captures transition on the front blade and yields a significantly different loading compared with RANS solutions obtained before. The less substantial impact on the rear blade is traced to rapid transition forced by the turbulent wake of the front blade. LES with a refined grid was found to shorten the transition width due to the crucial role of small scales during transition. A complementary study with an in-house compressible LES solver was conducted for a transonic tandem cascade at the inlet Mach number of 0.89. Flow expands around the leading edge of the front blade and is terminated by a shock which interacts with the suction surface boundary layer. The beneficial effect of tandem blading was found to be achieved by limiting this separation. The shock-induced separation also marks a rapid transition of the suction surface boundary layer that is readily captured in the LES, showing pre-transitional streaks, but could prove difficult even for current transition-sensitive RANS.


Author(s):  
Yagya Dutta Dwivedi ◽  
Vasishta Bhargava Nukala ◽  
Satya Prasad Maddula ◽  
Kiran Nair

Abstract Atmospheric turbulence is an unsteady phenomenon found in nature and plays significance role in predicting natural events and life prediction of structures. In this work, turbulence in surface boundary layer has been studied through empirical methods. Computer simulation of Von Karman, Kaimal methods were evaluated for different surface roughness and for low (1%), medium (10%) and high (50%) turbulence intensities. Instantaneous values of one minute time series for longitudinal turbulent wind at mean wind speed of 12 m/s using both spectra showed strong correlation in validation trends. Influence of integral length scales on turbulence kinetic energy production at different heights is illustrated. Time series for mean wind speed of 12 m/s with surface roughness value of 0.05 m have shown that variance for longitudinal, lateral and vertical velocity components were different and found to be anisotropic. Wind speed power spectral density from Davenport and Simiu profiles have also been calculated at surface roughness of 0.05 m and compared with k−1 and k−3 slopes for Kolmogorov k−5/3 law in inertial sub-range and k−7 in viscous dissipation range. At high frequencies, logarithmic slope of Kolmogorov −5/3rd law agreed well with Davenport, Harris, Simiu and Solari spectra than at low frequencies.


2002 ◽  
Vol 124 (3) ◽  
pp. 385-392 ◽  
Author(s):  
R. J. Howell ◽  
H. P. Hodson ◽  
V. Schulte ◽  
R. D. Stieger ◽  
Heinz-Peter Schiffer ◽  
...  

This paper describes a detailed study into the unsteady boundary layer behavior in two high-lift and one ultra-high-lift Rolls-Royce Deutschland LP turbines. The objectives of the paper are to show that high-lift and ultra-high-lift concepts have been successfully incorporated into the design of these new LP turbine profiles. Measurements from surface mounted hot film sensors were made in full size, cold flow test rigs at the altitude test facility at Stuttgart University. The LP turbine blade profiles are thought to be state of the art in terms of their lift and design philosophy. The two high-lift profiles represent slightly different styles of velocity distribution. The first high-lift profile comes from a two-stage LP turbine (the BR710 cold-flow, high-lift demonstrator rig). The second high-lift profile tested is from a three-stage machine (the BR715 LPT rig). The ultra-high-lift profile measurements come from a redesign of the BR715 LP turbine: this is designated the BR715UHL LP turbine. This ultra-high-lift profile represents a 12 percent reduction in blade numbers compared to the original BR715 turbine. The results from NGV2 on all of the turbines show “classical” unsteady boundary layer behavior. The measurements from NGV3 (of both the BR715 and BR715UHL turbines) are more complicated, but can still be broken down into classical regions of wake-induced transition, natural transition and calming. The wakes from both upstream rotors and NGVs interact in a complicated manner, affecting the suction surface boundary layer of NGV3. This has important implications for the prediction of the flows on blade rows in multistage environments.


The hydrodynamic lubrication of rough surfaces is analysed with the Reynolds equation, whose application requires the roughness spacing to be large, and the roughness height to be small, compared with the thick­ness of the fluid film. The general two-dimensional surface roughness is considered, and results applicable to any roughness structure are obtained. It is revealed analytically that two types of term contribute to roughness effects: one depends on the shape of the autocorrelation function and the other does not. The former contribution was neglected by previous workers. The numerical computation of an example shows that these two contributions are comparable in magnitude.


Author(s):  
Demetrios Lefas ◽  
Robert J. Miller

Abstract Every supersonic fan or compressor blade row has a streamtube, the ‘sonic streamtube’, which operates with a blade relative inlet Mach number of one. A key parameter in the design of the ‘sonic streamtube’ is the area ratio between the blade throat area and upstream passage area, Athroat/Ainlet. In this paper, it is shown that one unique value exists for this area ratio. If the area ratio differs, even slightly, from this unique value then the blade either chokes or has its suction surface boundary layer separated due to a strong shock. It is therefore surprising that in practice designers have relatively little problem designing blade sections with an inlet relative Mach number close to unity. This paper shows that this occurs due to a physical mechanism known as ‘transonic relief’. If a designer makes a mistake, and designs a blade with a ‘sonic streamtube’ which has the wrong area ratio, then ‘transonic relief’, will self-adjust the spanwise streamtube height automatically moving it towards the unique optimal area ratio, correcting for the designer’s error. Furthermore, as the blade incidence changes, the spanwise streamtube height self-adjusts, moving the area ratio towards its unique optimal value. Without ‘transonic relief’, supersonic and transonic fan and compressor design would be impossible. The paper develops a simple model which allows ‘transonic relief’ to be decoupled from other mechanisms, and to be systematically studied. The physical mechanism on which it is based is thus determined and its implications for blade design and manufacturing discussed.


2019 ◽  
Author(s):  
Arunprasath Subramanian ◽  
Andrea Gamannossi ◽  
Lorenzo Mazzei ◽  
Antonio Andreini

Author(s):  
Masahiro Inoue ◽  
Masato Furukawa ◽  
Kazuhisa Saiki ◽  
Kazutoyo Yamada

Structure of a tip leakage flow field in an axial compressor rotor has been investigated by detailed numerical simulations and appropriate post-processing. Physical explanations of the structure are made in terms of vortex-core identification, normalized helicity, vortex-lines, limiting streamlines, etc. The onset of the discrete tip leakage vortex is located on the suction surface at some distance from the leading edge. The vortex core with high vorticity is generated from a shear layer between the leakage jet flow and the main flow. The streamlines in the leakage flow are coiling around the vortex core. All the vortex-lines in the tip leakage vortex core link to ones in the suction surface boundary layer. The other vortex-lines in the suction surface boundary layer link to the vortex-lines in the pressure surface boundary layer and in the casing wall boundary layer. There are two mechanisms to reduce intensity of the tip leakage vortex: one is reduction of discharged vorticity caused by the linkage of vortex-lines between the suction surface and casing wall boundary layers, and another is diffusion of vorticity from the tip leakage vortex. Relative motion of the endwall has a substantial influence on the structure of the leakage flow field. In the case of a compressor rotor, it intensifies streamwise vorticity of the leakage vortex but reduces leakage flow loss.


2011 ◽  
Vol 134 (2) ◽  
Author(s):  
John D. Coull ◽  
Howard P. Hodson

The overall efficiency of low pressure turbines is largely determined by the two-dimensional profile loss, which is dominated by the contribution of the suction surface boundary layer. This boundary layer typically features a laminar separation bubble and is subjected to an inherently unsteady disturbance environment. The complexity of the flow behavior makes it difficult to numerically predict the profile loss. To address this problem, an empirical method is proposed for predicting the boundary layer integral parameters at the suction surface trailing edge, allowing the profile loss to be estimated. Extensive measurements have been conducted on a flat plate simulation of the suction surface boundary layer. The disturbance environment of real machines was modeled using a moving bar wake generator and a turbulence grid. From this data set, empirically based methods have been formulated using physical principles for the prediction of the momentum thickness and shape factor at the suction surface trailing edge. The predictions of these methods may be used to estimate the profile loss of a given cascade, which achieves reasonable agreement with the available data. By parameterizing the shape of the suction surface velocity distribution, the method is recast as a preliminary design tool. Powerfully, this may be used to guide the selection of the key design parameters (such as the blade loading and velocity distribution shape) and enables a reasonable estimation of the unsteady profile loss to be made at a very early stage of design. To illustrate the capabilities of the preliminary design tool, different styles of velocity distribution are evaluated for fixed blade loading and flow angles. The predictions suggest that relatively “flat-top” designs will have the lowest profile loss but good performance can also be achieved with front-loaded “peaky” distributions. The latter designs are more likely to have acceptable incidence tolerance.


2007 ◽  
Vol 111 (1118) ◽  
pp. 257-266 ◽  
Author(s):  
R. J. Howell ◽  
K. M. Roman

This paper describes how it is possible to reduce the profile losses on ultra high lift low pressure (LP) turbine blade profiles with the application of selected surface roughness and wake unsteadiness. Over the past several years, an understanding of wake interactions with the suction surface boundary layer on LP turbines has allowed the design of blades with ever increasing levels of lift. Under steady flow conditions, ultra high lift profiles would have large (and possibly open) separation bubbles present on the suction side which result from the very high diffusion levels. The separation bubble losses produced by it are reduced when unsteady wake flows are present. However, LP turbine blades have now reached a level of loading and diffusion where profile losses can no longer be controlled by wake unsteadiness alone. The ultra high lift profiles investigated here were created by attaching a flap to the trailing edge of another blade in a linear cascade — the so called flap-test technique. The experimental set-up used in this investigation allows for the simulation of upstream wakes by using a moving bar system. Hotwire and hotfilm measurements were used to obtain information about the boundary-layer state on the suction surface of the blade as it evolved in time. Measurements were taken at a Reynolds numbers ranging between 100,000 and 210,000. Two types of ultra high lift profile were investigated; ultra high lift and extended ultra high lift, where the latter has 25% greater back surface diffusion as well as a 12% increase in lift compared to the former. Results revealed that distributed roughness reduced the size of the separation bubble with steady flow. When wakes were present, the distributed roughness amplified disturbances in the boundary layer allowing for more rapid wake induced transition to take place, which tended to eliminate the separation bubble under the wake. The extended ultra high lift profile generated only slightly higher losses than the original ultra high lift profile, but more importantly it generated 12% greater lift.


Sign in / Sign up

Export Citation Format

Share Document