Analysis on Response of Blades With Friction Damping Interconnection Using a New Friction Model

Author(s):  
Zili Xu ◽  
Xinyi Li ◽  
Qingji Meng

Blades with damper structures have been widely used in gas and steam turbines. Operation experience indicate that damper structures can reduce the dynamic stress of the blade effectively, so it is essential to predict the oscillating characteristics of damped blade accurately. In this paper, a modified Oden friction model, which can consider the difference between static friction and dynamic friction, for analyzing nonlinear friction damping, is presented and the dynamic equations of motion of blade system is given also. The response of blade group with 5 blades is analyzed using the model presented in this paper. Factors such as the placement of connectors, external exciting force frequency, and normal pressure that influence the blade vibration characteristic are studied. Some results available for reference have been obtained.

2008 ◽  
Vol 15 (3-4) ◽  
pp. 291-298 ◽  
Author(s):  
L. Gaul ◽  
J. Roseira ◽  
J. Becker

In the last several years, there has been increasing interest in the use of friction joints for enhancing damping in structures. The joints themselves are responsible for the major part of the energy dissipation in assembled structures. The dissipated work in a joint depends on both the applied normal force and the excitation force. For the case of a constant amplitude excitation force, there is an optimal normal force which maximizes the damping. A ‘passive’ approach would be employed in this instance. In most cases however, the excitation force, as well as the interface parameters such as the friction coefficient, normal pressure distribution, etc., are not constant. In these cases, a ‘semi-active’ approach, which implements an active varying normal force, is necessary. For the ‘passive’ and ‘semi-active’ approaches, the normal force has to be measured. Interestingly, since the normal force in a friction joint influences the local stiffness, the natural frequencies of the assembled structure can be tuned by adjusting the normal force. Experiments and simulations are performed for a simple laboratory structure consisting of two superposed beams with friction in the interface. Numerical simulation of the friction interface requires non-linear models. The response of the double beam system is simulated using a numerical algorithm programmed inMATLABwhich models point-to-point friction with the Masing friction model. Numerical predictions and measurements of the double beam free vibration response are compared. A practical application is then described, in which a friction beam is used to damp the vibrations of the work piece table on a milling machine. The increased damping of the table reduces vibration amplitudes, which in turn results in enhanced surface quality of the machined parts, reduction in machine tool wear, and potentially higher feed rates. Optimal positioning of the friction beams is based on knowledge of the mode shapes, which are obtained from experimental modal analysis. The modal damping and the natural frequencies for the two dominant modes are measured for several combinations of excitation force and normal force.


2014 ◽  
Vol 81 (12) ◽  
Author(s):  
Xi Shi

Slip inception mechanism is very important for modeling of static friction and understanding of some experimental observations of friction. In this work, slip inception was treated as a local competence of interfacial bonding failure and weaker material failure. At any contacting point, if bond shear strength is weaker than softer material shear strength, slip inception is governed by interfacial bonding failure. Otherwise, it is governed by softer material failure. Considering the possible co-existence of these two slip inception mechanisms during presliding, a hybrid static friction model for smooth dry contact was proposed, which indicates that the static friction consists of two components: one contributed by contact area where bonding failure is dominant and the other contributed by contact area where material failure is dominant. With the proposed static friction model, the effects of contact pressure, the material properties, and the contact geometry on static friction were discussed.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 368
Author(s):  
Shengguang Zhu ◽  
Liyong Ni

A novel static friction model for the unlubricated contact of random rough surfaces at micro/nano scale is presented. This model is based on the energy dissipation mechanism that states that changes in the potential of the surfaces in contact lead to friction. Furthermore, it employs the statistical theory of two nominally flat rough surfaces in contact, which assumes that the contact between the equivalent rough peaks and the rigid flat plane satisfies the condition of interfacial friction. Additionally, it proposes a statistical coefficient of positional correlation that represents the contact situation between the equivalent rough surface and the rigid plane. Finally, this model is compared with the static friction model established by Kogut and Etsion (KE model). The results of the proposed model agree well with those of the KE model in the fully elastic contact zone. For the calculation of dry static friction of rough surfaces in contact, previous models have mainly been based on classical contact mechanics; however, this model introduces the potential barrier theory and statistics to address this and provides a new way to calculate unlubricated friction for rough surfaces in contact.


2021 ◽  
Author(s):  
Qingyuan Lin ◽  
Yong Zhao ◽  
Qingchao Sun ◽  
Kunyong Chen

Abstract Bolted connection is one of the most widely used mechanical connections because of its easiness of installation and disassembly. Research of bolted joints mainly focuses on two aspects: high precision tightening and improvement of anti-loosening performance. The under-head bearing friction coefficient and the thread friction coefficient are the two most important parameters that affect the tightening result of the bolted joint. They are also the most critical parameters that affect the anti-loosening performance of the bolted joint. Coulomb friction model is a commonly used model to describe under-head bearing friction and thread friction, which considers the friction coefficient as a constant independent of normal pressure and relative sliding velocity. In this paper, the viscous effect of the under-head bearing friction and thread friction is observed by measuring the friction coefficient of bolted joints. The value of the friction coefficient increases with the increase of the relative sliding velocity and the decrease of the normal pressure. It is found that the Coulomb viscous friction model can better describe the friction coefficient of bolted joints. Taking into account the dense friction effect, the loosening prediction model of bolted joints is modified. The experimental results show that the Coulomb viscous friction model can better describe the under-head bearing friction coefficient and thread friction coefficient. The model considering the dense effect can more accurately predict the loosening characteristics of bolted joints.


Author(s):  
Cagkan Yildiz ◽  
Tamer M. Wasfy ◽  
Hatem M. Wasfy ◽  
Jeanne M. Peters

In order to accurately predict the fatigue life and wear life of a belt, the various stresses that the belt is subjected to and the belt slip over the pulleys must be accurately calculated. In this paper, the effect of material and geometric parameters on the steady-state stresses (including normal, tangential and axial stresses), average belt slip for a flat belt, and belt-drive energy efficiency is studied using a high-fidelity flexible multibody dynamics model of the belt-drive. The belt’s rubber matrix is modeled using three-dimensional brick elements and the belt’s reinforcements are modeled using one dimensional truss elements. Friction between the belt and the pulleys is modeled using an asperity-based Coulomb friction model. The pulleys are modeled as cylindrical rigid bodies. The equations of motion are integrated using a time-accurate explicit solution procedure. The material parameters studied are the belt-pulley friction coefficient and the belt axial stiffness and damping. The geometric parameters studied are the belt thickness and the pulleys’ centers distance.


2014 ◽  
Vol 997 ◽  
pp. 321-324
Author(s):  
Wei Zheng ◽  
Guang Chun Wang ◽  
Bing Tao Tang ◽  
Xiao Juan Lin ◽  
Yan Zhi Sun

After modifying the Wahime/Bay friction model, a new friction model suitable for micro-forming process without lubrication is established. In this model, it is shows that the friction coefficient is a function of strain hardening exponent, the normal pressure and the initial yield stress of material. Based on the experimental data, the micro-upsetting process is simulated using the proposed friction model. The simulation results are used to investigate the size effect on the dry friction behavior. It is found that the Coulomb’s friction coefficient is dropping with miniaturization of specimens when the amount of reduction is not too large.


2008 ◽  
Vol 47-50 ◽  
pp. 246-249
Author(s):  
Min Gyu Jang ◽  
Chul Hee Lee ◽  
Seung Bok Choi

In this paper, a stick-slip compensation for the micro-positioning is presented using the statistical rough surface contact model. As for the micro-positioning structure, PZT (lead(Pb) zirconia(Zr) Titanate(Ti)) actuator is used to drive the load for precise positioning with its high resolution incorporating with the PID (Proportional Integral Derivative) control algorithm. Since the stick-slip characteristics for the micro structures are highly nonlinear and complicated, it is necessary to incorporate more detailed stick-slip model for the applications involving the high precision motion control. Thus, the elastic-plastic static friction model is used for the stick-slip compensation considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of the system for the positioning apparatus was derived from the dynamic behaviors of structural parts. Since the conventional piezoelectric actuator generates the short stroke, a bridge-type flexural hinge mechanism is introduced to amplify the linear motion range. Using the proposed smart structure, simulations under the representative positioning motion were conducted to demonstrate the micro-positioning under the stick-slip friction.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1428
Author(s):  
Shengguang Zhu ◽  
Liyong Ni

Previous research on friction calculation models has mainly focused on static friction, whereas sliding friction calculation models are rarely reported. In this paper, a novel sliding friction model for realizing a dry spherical flat contact with a roughness effect at the micro/nano scale is proposed. This model yields the sliding friction by the change in the periodic substrate potential, adopts the basic assumptions of the Greenwood–Williamson random contact model about asperities, and assumes that the contact area between a rigid sphere and a nominal rough flat satisfies the condition of interfacial friction. It subsequently employs a statistical method to determine the total sliding friction force, and finally, the feasibility of this model presented is verified by atomic force microscopy friction experiments. The comparison results show that the deviations of the sliding friction force and coefficient between the theoretical calculated values and the experimental values are in a relatively acceptable range for the samples with a small plasticity index (Ψ ≤ 1).


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Dayuan Ju ◽  
Qiao Sun

In wind turbine blade modeling, the coupling between rotor rotational motion and blade vibration has not been thoroughly investigated. The inclusion of the coupling terms in the wind turbine dynamics equations helps us understand the phenomenon of rotor oscillation due to blade vibration and possibly diagnose faults. In this study, a dynamics model of a rotor-blade system for a horizontal axis wind turbine (HAWT), which describes the coupling terms between the blade elastic movement and rotor gross rotation, is developed. The model is developed by using Lagrange's approach and the finite-element method has been adopted to discretize the blade. This model captures two-way interactions between aerodynamic wind flow and structural response. On the aerodynamic side, both steady and unsteady wind flow conditions are considered. On the structural side, blades are considered to deflect in both flap and edge directions while the rotor is treated as a rigid body. The proposed model is cross-validated against a model developed in the simulation software fatigue, aerodynamics, structure, and turbulence (fast). The coupling effects are excluded during the comparison since fast does not include these terms. Once verified, we added coupling terms to our model to investigate the effects of blade vibration on rotor movement, which has direct influence on the generator behavior. It is illustrated that the inclusion of coupling effects can increase the sensitivity of blade fault detection methods. The proposed model can be used to investigate the effects of different terms as well as analyze fluid–structure interaction.


2008 ◽  
Vol 43 (3-4) ◽  
pp. 238-247 ◽  
Author(s):  
Maziar Ramezani ◽  
Zaidi Mohd Ripin ◽  
Roslan Ahmad

Sign in / Sign up

Export Citation Format

Share Document