scholarly journals Ideal Power Output — An Alternative Aircraft Engine Performance Comparator

Author(s):  
Marvin F. Schmidt ◽  
Christopher M. Norden ◽  
Jeffrey M. Stricker

The gas turbine is applied in four basic configurations; the turbojet, the turbofan, the turboprop and the turboshaft. Comparisons of the performance of these various configurations is difficult since they convert the energy to different forms, i.e. thrust or shaft power. Cycle variables which do not necessarily constitute advancements in the state-of-the-art such as bypass ratio and fan pressure ratio can have a profound effect on thrust and shaft power. Differences in flight speed and altitude capability further confound the comparisons. What is required is a comparison methodology that removes all of these variables and yet puts all the various types of engines on an equitable basis. This paper will provide such a comparison tool. All turbomachinery, regardless of configuration, can be compared with this method.

1987 ◽  
Vol 109 (1) ◽  
pp. 46-54 ◽  
Author(s):  
G. Cerri

Combined gas-steam cycles have been analyzed from the thermodynamic point of view. Suitable thermodynamics indices—explained in Appendix A—have been utilized. The parameters that most influence efficiency have been singled out and their ranges of variability have been specified. Calculations have been carried out—see Appendix B—taking into account the state of the art for gas turbines and the usual values for the quantities of steam cycles. The results are given. The maximal gas turbine temperature has been varied between 800°C and 1400°C. The gas turbine pressure ratio has been analyzed in the range of 2–24. Afterburning has also been taken into consideration. Maximal efficiency curves and the corresponding specific work curves (referred to the compressed air) related to the parameters of the analysis are given and discussed.


Author(s):  
Joshua Sebastiampillai ◽  
Florian Jacob ◽  
Francesco S. Mastropierro ◽  
Andrew Rolt

Abstract The paper provides design and performance data for two envisaged year-2050 state-of-the-art engines: a geared high bypass turbofan for intercontinental missions and a contra-rotating pusher open rotor targeting short to medium range aircraft. It defines component performance and cycle parameters, general powerplant arrangements, sizes and weights. Reduced thrust requirements for future aircraft reflect expected improvements in engine and airframe technologies. Advanced simulation platforms have been developed, using the software PROOSIS, to model the engines and details of individual components, including custom elements for the open rotor engine. The engines are optimised and compared with ‘baseline’ year-2000 turbofans and an anticipated year-2025 entry-into-service open rotor to quantify the relative fuel-burn benefits. A preliminary scaling with non-optimised year-2050 ‘reference’ engines, based on Top-of-Climb (TOC) thrust and bypass ratio, highlights the trade-offs between reduced specific fuel consumption (SFC) and increased weight and engine diameter. These parameters are then converted into mission fuel burn using linear and non-linear trade factors from aircraft models. The final turbofan has an optimised design-point bypass ratio (BPR) of 16.8, and a maximum overall pressure ratio (OPR) of 75.4 for a 31.5% TOC thrust reduction and a 46% mission fuel burn reduction per passenger kilometre compared to the respective year-2000 baseline engine and aircraft combination. The final open rotor SFC is 9.5% less than the year-2025 open rotor and 39% less than the year-2000 turbofan, while the TOC thrust increases by 8% versus the 2025 open rotor, due to assumed increase in aircraft passenger capacity. Combined with airframe improvements, the final open rotor-powered aircraft has a 59% fuel-burn reduction per passenger kilometre relative to its year-2000 baseline.


Author(s):  
Jesuíno Takachi Tomita ◽  
Cleverson Bringhenti ◽  
João Roberto Barbosa ◽  
Vitor Alexandre Carlesse Martins

The design of a small gas turbine in the range of 5 kN thrust / 1.2 MW shaft power is being made in association with industry, aiming at distributed power generation and cogeneration. The gas turbine was constructed and its gas generator is being prepared for development tests. The results will be used for the final specification of the power section. The gas turbine design has been carried out using indigenous software, developed specially to fulfill the requirements of the engines design, as well as the support for validation of research work. The work reported in this paper deals with the design methodology of a 5:1 pressure ratio, 5-stage axial flow compressor with VIGV and a single stage axial flow turbine. These components were designed and their maps synthesized and fed to the gas turbine performance simulation program. The engine performance results were analyzed and verified. The calculated behavior compares with similar engines’, indicating they are qualitatively correct.


Author(s):  
G. Cerri

Combined gas-steam cycles have been analyzed from the thermodynamic point of view. Suitable thermodynamics indices — explained in Appendix A — have been utilized. The parameters that most influence efficiency have been singled out and their ranges of variability have been specified. Calculations have been carried out — see Appendix B — taking into account the state of the art for gas turbines and the usual values for the quantities of steam cycles. The results are given. The maximal gas turbine temperature has been varied between 800°C and 1400°C. The gas turbine pressure ratio has been analyzed in the range of 2–24. Afterburning has also been taken into consideration. Maximal efficiency curves and the corresponding specific work curves (referred to the compressed air) related to the parameters of the analysis are given and discussed.


Author(s):  
Jacopo Tacconi ◽  
Wilfried Visser ◽  
Dries Verstraete

Abstract Conventional Brayton cycles have demonstrated to be significantly less efficient than alternative propulsion systems (spark ignition, diesel, fuel cells, etc.) for low power output applications, such as for small size UAVs. The gas turbine performance could be enhanced through the introduction of heat exchangers, with the consequent increase of the overall engine weight. Semi-closed cycles have documented advantages of higher thermal efficiency and degree of compactness than traditional intercooled-recuperated open cycles. This paper discusses advantages and applicability of semi-closed cycles to a small gas turbine, designed for a medium altitude UAV mission. In particular, size and altitude effects have been accounted in the performance evaluation of two different semi-closed cycle arrangements designed for an output shaft power of 100 hp (74.57 kW). Resultant performance has been compared with equivalent simple recuperated and intercooled-recuperated open cycles. Furthermore, a final engine performance comparison has been made with data obtained from a similar analysis performed on a larger engine, with a power output of 300 hp (223.71 kW) and designed for an extremely high altitude UAV application. While promising results have been obtained for the larger case study, where semi-closed cycles have demonstrated superior performance and higher engine compactness than conventional solutions, similar trends have not been displayed for the smaller engines, as consequence of the strong size effects observed in the turbomachinery performance. For the 100 hp engine the semi-closed cycles are slightly outperformed by the open cycle engines.


Author(s):  
Uyioghosa Igie ◽  
Marco Abbondanza ◽  
Artur Szymański ◽  
Theoklis Nikolaidis

Industrial gas turbines are now required to operate more flexibly as a result of incentives and priorities given to renewable forms of energy. This study considers the extraction of compressed air from the gas turbine; it is implemented to store heat energy at periods of a surplus power supply and the reinjection at peak demand. Using an in-house engine performance simulation code, extractions and injections are investigated for a range of flows and for varied rear stage bleeding locations. Inter-stage bleeding is seen to unload the stage of extraction towards choke, while loading the subsequent stages, pushing them towards stall. Extracting after the last stage is shown to be appropriate for a wider range of flows: up to 15% of the compressor inlet flow. Injecting in this location at high flows pushes the closest stage towards stall. The same effect is observed in all the stages but to a lesser magnitude. Up to 17.5% injection seems allowable before compressor stalls; however, a more conservative estimate is expected with higher fidelity models. The study also shows an increase in performance with a rise in flow injection. Varying the design stage pressure ratio distribution brought about an improvement in the stall margin utilized, only for high extraction.


2016 ◽  
Vol 859 ◽  
pp. 20-28
Author(s):  
Cleopatra Florentina Cuciumita ◽  
Ionuţ Porumbel ◽  
Sterian Dănăilă

The paper presents the background and objectives of a new research project carried out in the field of in situ gas turbine combustion. An extensive literature review highlighting the state-of-the-art in the field is presented. Several possible solutions for the turbine burner are also included. The objectives and the expected original contributions of the projects conclude the paper.


Author(s):  
R. K. Bhargava ◽  
C. B. Meher-Homji ◽  
M. A. Chaker ◽  
M. Bianchi ◽  
F. Melino ◽  
...  

The strong influence of ambient temperature on the output and heat rate on a gas turbine has popularized the application of inlet fogging and overspray for power augmentation. One of the main advantages of overspray fogging is that it enhances power output as a result of decrease in compression work associated with the continuous evaporation of water within the compressor due to fog intercooling. A comprehensive review on the current understanding of the analytical and experimental aspects of overspray fogging technology as applied to gas turbines is presented in this paper.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Felix Klein ◽  
Stephan Staudacher

Abstract Fair comparison of future aircraft engine concepts requires the assumption of similar technological risk and a transparent book keeping of losses. A 1000 km and a 7000 km flight mission of a single-aisle airplane similar to the Aribus A321neo LR have been used to compare composite cycle engines, turbocompound engines and advanced gas turbines as potential options for an entry-into-service time frame of 2050+. A 2035 technology gas turbine serves as reference. The cycle optimization has been carried out with a peak pressure ratio of 250 and a maximum cycle temperature of 2200 K at cruise as boundary conditions. With the associated heat loss and the low efficiency of the gas exchange process limiting piston component efficiency, the cycle optimization filtered out composite cycle concepts. Taking mission fuel burn (MFB) as the most relevant criterion, the highest MFB reduction of 13.7% compared to the 2035 reference gas turbine is demonstrated for an air-cooled turbocompound concept with additional combustion chamber. An intercooled, hectopressure gas turbine with pressure gain combustion achieves 20.6% reduction in MFB relative to the 2035 reference gas turbine.


Author(s):  
Ben T. Zinn

This paper reviews the state of the art of active control systems (ACS) for gas turbine combustors. Specifically, it discusses the manner in which ACS can improve the performance of combustors, the architecture of such ACS, and the designs and promising performance of ACS that have been developed to control combustion instabilities, lean blowout and pattern factor. The paper closes with a discussion of research needs, with emphasis on the integration of utilized engine ACS, health monitoring and prognostication systems into a single control system that could survive in the harsh combustor environment.


Sign in / Sign up

Export Citation Format

Share Document