scholarly journals Design, Optimization, and Analysis of a High-Turning Transonic Tandem Compressor Cascade

Author(s):  
Anton Weber ◽  
Wolfgang Steinert

As a feasibility study for a stator guide vane a highly loaded transonic compressor stator blade row was designed, optimized, and tested in a transonic cascade facility. The flow entering the turning device with an inlet Mach number of 1.06 has to be turned by more than 60° and diffused extremely to leave the blade row without swirl. Therefore, the basic question was: Is it feasible to gain such a high amount of flow turning with an acceptable level of total pressure losses? The geometric concept chosen is a tandem cascade consisting of a transonic blade row with a flow turning of 10° followed by a subsequent high-turning subsonic cascade. The blade number ratio of the two blade rows was selected to be 1:2 (transonic: subsonic). Design and optimization have been performed using a modern Navier-Stokes flow solver under 2D assumptions by neglecting side wall boundary-layer effects. In the design process it was found to be necessary to guide the wake of the low turning transonic blade near the suction surface of the subsonic blade. Furthermore, it is advantageous to enlarge the blade spacing of the ‘wake’ passage in relation to the neighbouring one of the high turning part. The optimized design geometry of the tandem cascade was tested in the transonic cascade windtunnel of the DLR in Cologne. At design flow conditions the experiments confirmed the design target in every aspect. A flow turning of more than 60°, a static pressure ratio of 1.75, and a total pressure loss coefficient of 0.15 was measured. The working range at design inlet Mach number of 1.06 is about 3.5° in terms of the inlet flow angle. A viscous analysis of various operating points showed excellent agreement with the experimental results.

Author(s):  
A. Hergt ◽  
S. Grund ◽  
J. Klinner ◽  
W. Steinert ◽  
M. Beversdorff ◽  
...  

The development of modern axial compressors has already reached a high level. Therefore an enlargement of the design space by means of new or advanced aerodynamic methods is necessary in order to achieve further enhancements of performance and efficiency. The tandem arrangement of profiles in a transonic compressor blade row is such a method. It is necessary to address the design aspects a bit more in detail in order to efficiently apply this blading concept to turbomachinery. Therefore, in the current study the known design aspects of tandem blading in compressors will be summed up under consideration of the aerodynamic effects and construction characteristics of a transonic compressor tandem. Based on this knowledge, a new transonic compressor tandem cascade (DLRTTC) with an inflow Mach number of 0.9 is designed using modern numerical methods and a multi objective optimization process. Three objective functions as well as three operating points are used in the optimization. Furthermore, both tandem blades and their arrangement are parameterized. From the resulting database of 1246 members a final best member is chosen as state-of-the-art design for further detailed investigation. The aim of the ensuing experimental and numerical investigation is to answer the question, whether the tandem cascade resulting from the modern design process fulfills the described design aspects and delivers the requested performance and efficiency criteria. The numerical simulations within the study are carried out with the DLR flow solver TRACE. The experiments are performed at the Transonic Cascade Wind Tunnel of DLR in Cologne. The inflow Mach number during the tests is 0.9 and the AVDR [1, 2] is adjusted to 1.3 (design value). Wake measurements with a 3-hole probe are carried out in order to determine the cascade performance. The experimental results show an increase in losses and a reduction of the cascade deflection by about 2 degrees compared to design concept. Nevertheless, the experimental and numerical results allow a good understanding of the aerodynamic effects. In addition, Planar PIV was applied in a single S1 plane located at midspan to capture the velocity field in the wake of blade 1 in order to analyze the wake flow in detail and describe its influence on the cascade deflection and loss behavior. Finally, an outlook will be given on what future tandem compressor research should be focused.


1984 ◽  
Vol 106 (2) ◽  
pp. 288-294 ◽  
Author(s):  
H. A. Schreiber ◽  
H. Starken

A transonic compressor rotor blade cascade was tested in order to elucidate the flow behavior in the transonic regime and to determine the performance characteristic in the whole operating range of a rotor blade section. The experiments have been conducted in a transonic cascade wind tunnel, which enables tests even at sonic inlet velocities. The influence of the upstream Mach number between 0.8 and 1.1 and the inlet flow angle between choking and stalling of the blade row was investigated. The effect of the axial velocity density ratio (AVDR) could be studied by applying an endwall suction device. Furthermore, the level of the shock losses was determined from a wake analysis. A final comparison of cascade losses and those of the corresponding rotor blade element shows good agreement which underlines the applicability of the cascade model in the design of axial flow turbomachines.


Author(s):  
H. A. Schreiber ◽  
H. Starken

A transonic compressor rotor blade cascade was tested in order to elucidate the flow behaviour in the transonic regime and to determine the performance characteristic in the whole operating range of a rotor blade section. The experiments have been conducted in a transonic cascade wind tunnel, which enables tests even at sonic inlet velocities. The influence of the upstream Mach number between 0.8 and 1.1 and the inlet flow angle between choking and stalling of the blade row was investigated. The effect of the axial velocity density ratio (AVDR) could be studied by applying an endwall suction device. Furthermore the level of the shock losses was determined from a wake analysis. A final comparison of cascade losses and those of the corresponding rotor blade element shows good agreement which underlines the applicability of the cascade model in the design of axial flow turbomachines.


Author(s):  
A. Hergt ◽  
R. Meyer ◽  
M. W. Mu¨ller ◽  
K. Engel

Secondary flow effects like the corner stall between the wall and the vane in a compressor stage are responsible for a large part of total pressure losses. An extensive experimental study of flow control in a highly loaded compressor cascade was performed in order to decrease the separation and reduce the losses by means of vortex generators. The vortex generators were attached at the surface of the cascade side walls. These flow control devices produce strong vortices, which enhance the mixing between the main flow and the decelerated boundary layer at the side wall. Thus, the corner flow separation and the total pressure losses could be reduced. The experiments were carried out with a compressor cascade at a high-speed test facility at the DLR in Berlin at minimum loss (design point) and off-design of the cascade at Reynolds numbers up to Re = 0.6 × 106 (based on 40 mm chord) and Mach numbers up to M = 0.7. The cascade consisted of five vanes. The blade profiles are comparable to the hub section of the stator vanes used in the transonic compressor test rig running at Technische Universita¨t Darmstadt. In the range between −2° and +4° angle of incidence the total pressure losses of the cascade could be reduced up to 4.6% by means of vortex generators, whereas the static pressure rise was not influenced. Based on the results of the cascade measurements, the vortex generators were applied in front of the stator row of the single stage axial compressor at Technische Universita¨t Darmstadt. A numerical simulation of the compressor flow provided an indication for the adjustment of the vortex generators at the hub and casing. In the experiments the pressure rise and the efficiency of the axial compressor was measured and it could be shown that vortex generators partially improve the efficiency.


2021 ◽  
Vol 11 (11) ◽  
pp. 4845
Author(s):  
Mohammad Hossein Noorsalehi ◽  
Mahdi Nili-Ahmadabadi ◽  
Seyed Hossein Nasrazadani ◽  
Kyung Chun Kim

The upgraded elastic surface algorithm (UESA) is a physical inverse design method that was recently developed for a compressor cascade with double-circular-arc blades. In this method, the blade walls are modeled as elastic Timoshenko beams that smoothly deform because of the difference between the target and current pressure distributions. Nevertheless, the UESA is completely unstable for a compressor cascade with an intense normal shock, which causes a divergence due to the high pressure difference near the shock and the displacement of shock during the geometry corrections. In this study, the UESA was stabilized for the inverse design of a compressor cascade with normal shock, with no geometrical filtration. In the new version of this method, a distribution for the elastic modulus along the Timoshenko beam was chosen to increase its stiffness near the normal shock and to control the high deformations and oscillations in this region. Furthermore, to prevent surface oscillations, nodes need to be constrained to move perpendicularly to the chord line. With these modifications, the instability and oscillation were removed through the shape modification process. Two design cases were examined to evaluate the method for a transonic cascade with normal shock. The method was also capable of finding a physical pressure distribution that was nearest to the target one.


Author(s):  
Toyotaka Sonoda ◽  
Markus Olhofer ◽  
Toshiyuki Arima ◽  
Bernhard Sendhoff

In this study, a numerical shape optimization method based on evolutionary algorithms coupled with a verified CFD solver has been applied to the ambitious target of a shock free 2-D supersonic inlet Mach number compressor cascade. The study is based on the DLR-PAV-1.5 supersonic compressor cascade designed by the pre-compression blading concept. The DLR cascade airfoil has been optimized using a verified CFD code. A superior performance of the optimized supersonic cascade with about 24% reduction of the total pressure loss coefficient compared to the original cascade has been realized. The flow mechanisms observable around the blade with improved performance and the resulting design concept are discussed in this paper.


Author(s):  
A. Hergt ◽  
J. Klinner ◽  
J. Wellner ◽  
C. Willert ◽  
S. Grund ◽  
...  

The flow through a transonic compressor cascade shows a very complex structure due to the occuring shock waves. In addition, the interaction of these shock waves with the blade boundary layer inherently leads to a very unsteady flow behaviour. The aim of the current investigation is to quantify this behaviour and its influence on the cascade performance as well as to describe the occuring transonic flow phenomena in detail. Therefore, an extensive experimental investigation of the flow in a transonic compressor cascade has been conducted within the transonic cascade wind tunnel of DLR at Cologne. In this process, the flow phenomena were thoroughly examined for an inflow Mach number of 1.21. The experiments investigate both, the laminar as well as the turbulent shock wave boundary layer interaction within the blade passage and the resulting unsteady behaviour. The experiments show a fluctuation range of the passage shock wave of about 10 percent chord for both cases, which is directly linked with a change of the inflow angle and of the operating point of the cascade. Thereafter, RANS simulations have been performed aiming at the verification of the reproducibility of the experimentally examined flow behavior. Here it is observed that the dominant flow effects are not reproduced by a steady numerical simulation. Therefore, a further unsteady simulation has been carried out in order to capture the unsteady flow behaviour. The results from this simulation show that the fluctuation of the passage shock wave can be reproduced but not in the correct magnitude. This leads to a remaining weak point within the design process of transonic compressor blades, because the working range will be overpredicted. The resulting conclusion of the study is that the use of scale resolving methods such as LES or the application of DNS is necessary to correctly predict unsteadiness of the transonic cascade flow and its impact on the cascade performance.


Author(s):  
R. Fuchs ◽  
W. Steinert ◽  
H. Starken

A transonic compressor rotor cascade designed for an inlet Mach number of 1.09 and 14 degrees of flow turning has been redesigned for higher loading by an increased pitch-to-chord ratio. Test results, showing the influence of inlet Mach number and flow angle on cascade performance are presented and compared to data of the basic design. Loss-levels of both, the original and the redesigned higher loaded blade were identical at design condition, but the new design achieved even lower losses at lower inlet Mach numbers. The computational design and analysis has been performed by a fast inviscid time-dependent code coupled to a viscous direct/inverse integral boundary-layer code. Good agreement was achieved between measured and predicted surface Mach number distributions as well as exit-flow angles. A boundary-layer visualization method has been used to detect laminar separation bubbles and turbulent separation regions. Quantitative results of measured bubble positions are presented and compared to calculated results.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
D. J. Hill ◽  
J. J. Defoe

Abstract This paper numerically explores the manner in which blade row inlet incidence variation scales with various distortion patterns and intensities. The objectives are to (1) identify the most appropriate parameter whose circumferential variation can be used to assess scaling relationships of a transonic compressor and (2) use this parameter to evaluate two types of non-uniform inflow patterns, vertically stratified total pressure distortions and radially stratified total enthalpy and total pressure distortions. A body force model of the blade rows is employed to reduce computational cost; the approach has been shown to capture distortion transfer and to be able to predict upstream flow redistribution with inlet distortion. Diffusion factor is shown to be an inadequate proxy for streamline loss generation in non-uniform flow, leading to the choice of incidence angle variations as the metric for which we assess scaling relationships. Posteriori scaling of circumferential flow angle variation based on the maximum incidence excursion for varying distortion intensity yields an accurate method for prediction of the impact for other distortion intensities; linear regression of the maximum variation in incidence around the annulus as a function of distortion intensity had R2 > 0.97 for all spanwise locations examined in both the rotor and stator for both vertically and radially stratified distortions. However, changes to far upstream distortion shape yield highly non-linear incidence variation scaling; the results suggest that the pitchwise gradients of far upstream total pressure govern the degree of linearity for incidence variation scaling.


Author(s):  
Majed Sammak ◽  
Srikanth Deshpande ◽  
Magnus Genrup

The objective of the paper is to present the through-flow design of a twin-shaft oxy-fuel turbine. The through-flow design is the subsequent step after the turbine mean-line design. The through-flow phase analyses the flow in both axial and radial directions, where the flow is computed from hub to tip and along streamlines. The parameterization of the through-flow is based on the mean-line results, so principal features such as blade angles at the mean-line into the through-flow phase should be retained. Parameters such as total inlet pressure and temperature, mass flow, rotation speed and turbine geometries are required for the through-flow modelling. The through-flow study was performed using commercial software — AxCent(™) from Concepts NREC. The rotation speed of the twin-shaft power turbine was set to 7200 rpm, while the power turbine was set to 4800 rpm. The mean-line design determined that the twin-shaft turbine should be designed with two compressor turbine stages and three power turbine stages. The through-flow objective was to study the variations in the thermodynamic parameters along the blade. The power turbine last-stage design was studied because of the importance of determining exit Mach number distribution of the rotor tip. The last stage was designed with damped forced condition. The term ‘damped’ is used because the opening from the tip to the hub is limited to a certain value rather than maintaining the full concept of forced vortex. The study showed the parameter distribution of relative Mach number, total pressure and temperature, relative flow angle and tangential velocity. Through-flow results at 50% span and mean-line results showed reasonable agreement between static pressure, total pressure, reaction degree and total efficiency. Other parameters such as total temperature and relative Mach number showed some difference which can be attributed to working fluid in AxCent being pure CO2. The relative tip Mach number at rotor exit was 1.03, which is lower than the maximum typically allowed value of 1.2. The total pressure distribution was smooth from hub to tip which minimizes the spanwise gradient of total pressure and thus reduces the strength of secondary vortices. The reaction degree distribution was presented in the paper and no problems were revealed in the reaction degree at the hub. Rotor blades were designed to produce a smooth exit relative flow angle distribution. The relative flow angle varied by approximately 5° from hub to tip. The tangential velocity distribution was proportional to blade radius, which coincided with forced vortex design. Through-flow design showed that the mean-line design of a twin-shaft oxy-fuel turbine was suitable.


Sign in / Sign up

Export Citation Format

Share Document