Development of the Ceramic Gas Turbine Engine System (CGT301)

Author(s):  
Takeshi Sakida ◽  
Shinya Tanaka ◽  
Takao Mikami ◽  
Masashi Tatsuzawa ◽  
Tomoki Taoka

The CGT301 ceramic gas turbine has been developed under a contract from NEDO as a part of the New Sunshine Program of MITI since 1988 to 1998. The CGT301 is a recuperated, single-shaft ceramic gas turbine. Ceramic parts are used in the hot section of the engine, such as turbine blades, nozzle vanes, combustion liners and so on. As a primary feature of this turbine, the rotors are composed of ceramic blades inserted into metallic disks (“hybrid rotor”) for the future applicability to the large gas turbine. The R & D program consists of three phases, the model metal gas turbine, the primary type ceramic gas turbine and the pilot ceramic gas turbine. The pilot ceramic gas turbine showed etable operation at TIT of 1,350°C. This paper presents the progress in the development of the pilot ceramic gas turbine of CGT301.

In the past three decades, it is very challenging for the researchers to design and development a best gas turbine engine component. Engine component has to face different operating conditions at different working environments. Nickel based superalloys are the best material to design turbine components. Inconel 718, Inconel 617, Hastelloy, Monel and Udimet are the common material used for turbine components. Directional solidification is one of the conventional casting routes followed to develop turbine blades. It is also reported that the raw materials are heat treated / age hardened to enrich the desired properties of the material implementation. Accordingly they are highly susceptible to mechanical and thermal stresses while operating. The hot section of the turbine components will experience repeated thermal stress. The halides in the combination of sulfur, chlorides and vanadate are deposited as molten salt on the surface of the turbine blade. On prolonged exposure the surface of the turbine blade starts to peel as an oxide scale. Microscopic images are the supportive results to compare the surface morphology after complete oxidation / corrosion studies. The spectroscopic results are useful to identify the elemental analysis over oxides formed. The predominant oxides observed are NiO, Cr2O3, Fe2O3 and NiCr2O4. These oxides are vulnerable on prolonged exposure and according to PB ratio the passivation are very less. In recent research, the invention on nickel based superalloys turbine blades produced through other advanced manufacturing process is also compared. A summary was made through comparing the conventional material and advanced materials performance of turbine blade material for high temperature performance.


Author(s):  
J. A. Saintsbury ◽  
P. Sampath

The impact of potential aviation gas turbine fuels available in the near to midterm, is reviewed with particular reference to the small aviation gas turbine engine. The future course of gas turbine combustion R&D, and the probable need for compromise in fuels and engine technology, is also discussed. Operating experience to date on Pratt & Whitney Aircraft of Canada PT6 engines, with fuels not currently considered of aviation quality, is reported.


2004 ◽  
Vol 126 (3) ◽  
pp. 434-444 ◽  
Author(s):  
Christophe Marques ◽  
Kevin W. Kelly

Nickel micro pin fin heat exchangers can be electroplated directly onto planar or non-planar metal surfaces using a derivative of the LIGA micromachining process. These heat exchangers offer the potential to more effectively control the temperature of surfaces in high heat flux applications. Of particular interest is the temperature control of gas turbine engine components. The components in the gas turbine engine that require efficient, improved cooling schemes include the gas turbine blades, the stator vanes, the turbine disk, and the combustor liner. Efficient heating of component surfaces may also be required (i.e., surfaces near the compressor inlet to prevent deicing). In all cases, correlations providing the Nusselt number and the friction factor are needed for such micro pin fin heat exchangers. Heat transfer and pressure loss experimental results are reported for a flat parallel plate pin fin micro heat exchanger with a staggered pin fin array, with height-to-diameter ratios of 1.0, with spacing-to-diameter ratios of 2.5 and for Reynolds numbers (based on the hydraulic diameter of the channel) from 4000 to 20,000. The results are compared to studies of larger scale, but geometrically similar, pin fin heat exchangers. To motivate further research, an analytic model is described which uses the empirical results from the pin fin heat exchanger experiments to predict a cooling effectiveness exceeding 0.82 in a gas turbine blade cooling application. As a final point, the feasibility of fabricating a relatively complex micro heat exchanger on a simple airfoil (a cylinder) is demonstrated.


Author(s):  
J. R. Taylor

A discussion of the problems encountered in prediction of heat transfer in the turbine section of a gas turbine engine is presented. Areas of current gas turbine engine is presented. Areas of current concern to designers where knowledge is deficient or lacking are elucidated. Consideration is given to methods and problems associated with determination of heat transfer coefficients, external gas temperatures, and, where applicable, film cooling effectiveness. The paper is divided into parts dealing with turbine airfoil heat transfer, endwall heat transfer, and heat transfer in the internal cavities of cooled turbine blades. Recent literature dealing with these topics is listed.


Author(s):  
Kwai S. Chan ◽  
Michael P. Enright ◽  
Patrick J. Golden ◽  
Samir Naboulsi ◽  
Ramesh Chandra ◽  
...  

High-cycle fatigue (HCF) is arguably one of the costliest sources of in-service damage in military aircraft engines. HCF of turbine blades and disks can pose a significant engine risk because fatigue failure can result from resonant vibratory stresses sustained over a relatively short time. A common approach to mitigate HCF risk is to avoid dangerous resonant vibration modes (first bending and torsion modes, etc.) and instabilities (flutter and rotating stall) in the operating range. However, it might be impossible to avoid all the resonance for all flight conditions. In this paper, a methodology is presented to assess the influences of HCF loading on the fracture risk of gas turbine engine components subjected to fretting fatigue. The methodology is based on an integration of a global finite element analysis of the disk-blade assembly, numerical solution of the singular integral equations using the CAPRI (Contact Analysis for Profiles of Random Indenters) and Worst Case Fret methods, and risk assessment using the DARWIN (Design Assessment of Reliability with Inspection) probabilistic fracture mechanics code. The methodology is illustrated for an actual military engine disk under real life loading conditions.


1973 ◽  
Vol 5 (11) ◽  
pp. 1361-1364
Author(s):  
B. A. Gryaznov ◽  
S. S. Gorodetskii ◽  
A. S. Tugarinov

Author(s):  
Sooyong Kim ◽  
Sungryong Lee ◽  
Jewook Ryu ◽  
V. E. Spitsyn

Gas turbine engine has been applied to the aircraft and ship propulsion with its advantages of compactness and comparatively short starting time. With a significant improvement in gas turbine efficiency with development of super alloy materials and advancement in cooling technologies in the second half of 1990s, its importance as a source of base load as well as peak load power generation has been increasing. However, with increased demand in nuclear power and renewable energy in the 21st century, there seems to be speculations among the power generation industries that gas turbine will take more or less a buffering role supplementing the irregular inflow of electricity to the grid rather than acting as a base load power source. With the shift in the role of gas turbine from base to supplementary, CHP application based on small powered gas turbine utilizing biogas or syngas as its fuel is expected to increase in the future. In this context, this paper describes the development result of 5MW gas turbine engine for CHP application. It can be operated with LNG or syngas of low LHV fuel. Originally, the engine was designed for LNG as its primary fuel, but since the importance of syngas power generation market will be increasing in the future, a complementary work for modification of combustor part has been carried out and has been tested. However, this paper deals with the parts developed with the use of LNG fuel. The test result of emission characteristics meets the standards required in Korea. The development has been made through the cooperation of Doosan Heavy Industry (DHI, Korea) and Zory-Mashproekt (Ukraine).


Author(s):  
EP Filinov ◽  
VS Kuz’michev ◽  
A Yu Tkachenko ◽  
YaA Ostapyuk ◽  
IN Krupenich

Development of a gas turbine engine starts with optimization of the working process parameters. Turbine inlet temperature is among the most influential parameters that largely determine performance of an engine. As typical turbine inlet temperatures substantially exceed the point where metal turbine blades maintain reasonable thermal strength, proper modeling of the turbine cooling system becomes crucial for optimization of the engine’s parameters. Currently available numerical models are based on empirical data and thus must be updated regularly. This paper reviews the published information on turbine cooling requirements, and provides an approximation curve that generalizes data on all types of blade/vane cooling and is suitable for computer-based optimization.


Sign in / Sign up

Export Citation Format

Share Document