A Combined Numerical and Experimental Study of Air Bubble Dynamics in Converging Section of Effervescent Atomizer

Author(s):  
Deify Law ◽  
Thomas Shepard ◽  
Ibrahim Wardi

Inside of an effervescent atomizer gas is injected into a liquid cross-flow in order to produce a bubbly two-phase mixture. The presence of gas bubbles leads to enhanced liquid break-up as compared to simple pressure atomization of the liquid phase alone [1]. In the present work, the dynamic shapes and sizes of single air bubbles injected in liquid water cross flow of an effervescent atomizer’s mixing chamber are investigated numerically and experimentally. Particular focus is aimed on the convergent channel section just prior to the atomizer exit orifice where the bubble experiences a significant drop in pressure. Volume of fluid (VOF) modeling and simulations are performed using the commercial computational fluid dynamics (CFD) code ANSYS FLUENT and further provide information on the liquid velocities near the air bubble. A high-speed imaging system and digital image processing are used for capturing experimental data on this highly dynamic process. The numerical results are compared with experimental visualizations to better understand the physical interactions between the two phases approaching the atomizer exit.

Author(s):  
Alan Kalbfleisch ◽  
Kamran Siddiqui

Bubble breakers have been shown to reduce the bubble size and hence increasing the bubble surface-to-volume ratio facilitating higher mass transfer. We report on an experimental study investigating the effect of mesh-type bubble breaker on two-phase co-flow in a vertical column. A range of gas-liquid flow rates ratios (GLR) has been considered that covers the two-phase regimes from bubbly flow to slug flow. A vertical glass tube was used as the experimental apparatus which provides full optical access. A high speed imaging system was used to capture the flow dynamics for bubble characterization. The results show that the bubble size generated by the mesh bubble breaker is greatly affected by the pore size. For a bubbly flow regime, the initial bubble size was reduced by approximately 60%–70% for a pore size of 1mm and by about 45%–50% for a pore size of 4mm. It is found that the transition from bubbly flow to slug flow can be affected by the mesh bubble breaker. The results show that in general, the mesh bubble breaker increases the GLR limit for the transition from bubbly to slug flow.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 208
Author(s):  
Peter Reinke ◽  
Jan Ahlrichs ◽  
Tom Beckmann ◽  
Marcus Schmidt

The volume-of-flow method combined with the Rayleigh–Plesset equation is well established for the computation of cavitation, i.e., the generation and transportation of vapor bubbles inside a liquid flow resulting in cloud, sheet or streamline cavitation. There are, however, limitations, if this method is applied to a restricted flow between two adjacent walls and the bubbles’ size is of the same magnitude as that of the clearance between the walls. This work presents experimental and numerical results of the bubble generation and its transportation in a Couette-type flow under the influence of shear and a strong pressure gradient which are typical for journal bearings or hydraulic seals. Under the impact of variations of the film thickness, the VoF method produces reliable results if bubble diameters are less than half the clearance between the walls. For larger bubbles, the wall contact becomes significant and the bubbles adopt an elliptical shape forced by the shear flow and under the influence of a strong pressure gradient. Moreover, transient changes in the pressure result in transient cavitation, which is captured by high-speed imaging providing material to evaluate transient, three-dimensional computations of a two-phase flow.


Author(s):  
Paul A. Brandner ◽  
James A. Venning ◽  
Bryce W. Pearce

Cavitating and bubbly flows involve a host of physical phenomena and processes ranging from nucleation, surface and interfacial effects, mass transfer via diffusion and phase change to macroscopic flow physics involving bubble dynamics, turbulent flow interactions and two-phase compressible effects. The complex physics that result from these phenomena and their interactions make for flows that are difficult to investigate and analyse. From an experimental perspective, evolving sensing technology and data processing provide opportunities for gaining new insight and understanding of these complex flows, and the continuous wavelet transform (CWT) is a powerful tool to aid in their elucidation. Five case studies are presented involving many of these phenomena in which the CWT was key to data analysis and interpretation. A diverse set of experiments are presented involving a range of physical and temporal scales and experimental techniques. Bubble turbulent break-up is investigated using hydroacoustics, bubble dynamics and high-speed imaging; microbubbles are sized using light scattering and ultrasonic sensing, and large-scale coherent shedding driven by various mechanisms are analysed using simultaneous high-speed imaging and physical measurement techniques. The experimental set-up, aspect of cavitation being addressed, how the wavelets were applied, their advantages over other techniques and key findings are presented for each case study. This paper is part of the theme issue ‘Redundancy rules: the continuous wavelet transform comes of age’.


Author(s):  
Afshin Goharzadeh ◽  
Peter Rodgers

This paper presents an experimental study of gas-liquid slug flow inside a horizontal pipe. The influence of air bubble passage on liquid flow is characterized using Particle Image Velocimetry (PIV) combined with Refractive Index Matching (RIM) and fluorescent tracers. A physical insight into the velocity distribution within slug flow is presented. It was observed that the slug flow significantly influences the velocity profile in the liquid film. Measured velocity distributions also revealed a significant drop in the velocity magnitude immediately upstream of the slug nose. These findings aim to aid an understanding of the mechanism of solid transportation in slug flows.


Author(s):  
Arvind Jayaprakash ◽  
Sowmitra Singh ◽  
Georges Chahine

The dynamics of a primary relatively large bubble in a water mixture including very fine bubbles is investigated experimentally and the results are provided to several parallel on-going analytical and numerical approaches. The main/primary bubble is produced by an underwater spark discharge from two concentric electrodes placed in the bubbly medium, which is generated using electrolysis. A grid of thin perpendicular wires is used to generate bubble distributions of varying intensities. The size of the main bubble is controlled by the discharge voltage, the capacitors size, and the pressure imposed in the container. The size and concentration of the fine bubbles can be controlled by the electrolysis voltage, the length, diameter, and type of the wires, and also by the pressure imposed in the container. This enables parametric study of the factors controlling the dynamics of the primary bubble and development of relationships between the bubble characteristic quantities such as maximum bubble radius and bubble period and the characteristics of the surrounding two-phase medium: micro bubble sizes and void fraction. The dynamics of the main bubble and the mixture is observed using high speed video photography. The void fraction/density of the bubbly mixture in the fluid domain is measured as a function of time and space using image analysis of the high speed movies. The interaction between the primary bubble and the bubbly medium is analyzed using both field pressure measurements and high-speed videography. Parameters such as the primary bubble energy and the bubble mixture density (void fraction) are varied, and their effects studied. The experimental data is then compared to simple compressible equations employed for spherical bubbles including a modified Gilmore Equation. Suggestions for improvement of the modeling are then presented.


2018 ◽  
Vol 183 ◽  
pp. 02043 ◽  
Author(s):  
Bratislav Lukić ◽  
Dominique Saletti ◽  
Pascal Forquin

This paper presents the measurement results of the dynamic tensile strength of a High Performance Concrete (HPC) obtained using full-field identification method. An ultra-high speed imaging system and the virtual fields method were used to obtain this information. Furthermore the measurement results were compared with the local point-wise measurement to validate the data pressing. The obtained spall strength was found to be consistently 20% lower than the one obtained when the Novikov formula is used.


2005 ◽  
Author(s):  
X. D. Wang ◽  
G. Lu ◽  
X. F. Peng ◽  
B. X. Wang

A visual study was conducted to investigate the evaporation and nucleate boiling of a water droplet on heated copper, aluminum, or stainless surfaces with temperature ranging from 50°C to 112°C. Using a high-speed video imaging system, the dynamical process of the evaporation of a droplet was recoded to measure the transient variation of its diameter, height, and contact angle. When the contact temperature was lower than the saturation temperature, the evaporation was in film evaporation regime, and the evaporation could be divided into two stages. When the surface temperature was higher than the saturation temperature, the nucleate boiling was observed. The dynamical behavior of nucleation, bubble dynamics droplet were detail observed and discussed. The linear relationships of the average heat flux vs. temperature of the heated surfaces were found to hold for both the film evaporation regime and nucleate boiling regime. The different slopes indicated their heat transfer mechanism was distinct, the heat flux decreased in the nucleate boiling regime more rapidly than in the film evaporation due to the strong interaction between the bubbles.


2004 ◽  
Vol 31 (5) ◽  
pp. 880-891 ◽  
Author(s):  
Mehmet Ali Kökpinar

High-speed two-phase flows over a 30° stepped flume were experimentally investigated using macro-roughness elements. The roughness elements included combinations of steps and horizontal strips. Local values of air concentration, air bubble frequency, and mean chord lengths were measured by a fiber-optical instrumentation system in the air–water flow region. The range of unit discharge of water was varied from 0.06 to 0.20 m2/s. Three step configurations were studied: (i) without macro-roughness elements, (ii) with macro-roughness elements on each step, and (iii) with macro-roughness elements on each second step (AMR configuration). The results were compared in terms of onset flow conditions and internal air–water flow parameters such as local air concentration, mean air bubble chord length distribution, and air bubble frequency in the skimming flow regime. It was observed that the AMR configuration produced the maximum free-surface aeration among the other configurations. This alternative step geometry has potential for less cavitation damage than conventional step geometry because of the greater air entrainment.Key words: stepped chute, air-entrainment, air-water flow properties, macro-roughness elements, skimming flow.


Sign in / Sign up

Export Citation Format

Share Document