Experimental Characterization of Particle-Laden Air Flow in a Horizontal Pipe

Author(s):  
Y. Dai ◽  
T. S. Khan ◽  
M. S. Alshehhi ◽  
L. Khezzar

In many engineering applications, movement of micron and submicron size solid particles with compressed air or gas causes major engineering problems as in the case of black powder in oil and gas industry. Therefore, understanding its physical and flow dynamics characteristics inside a pipeline can be very useful to efficiently manage pipelines contamination issues. This paper presents an experimental study carried out to simulate characteristics of air-sand particles flow through a transparent horizontal pipe with various flow conditions. Experimental analysis focuses on determination of critical pickup velocity of the solid particles and measurement of pressure drop across the sand bed of various blockage ratios. Results have been compared with previous studies in literature. Limited experiments are conducted using black powder samples as well. Comparison of results shows vast deviation between sand and black powder behavior.

World Science ◽  
2019 ◽  
Vol 3 (5(45)) ◽  
pp. 16-21
Author(s):  
Мирхамидова Д. Н. ◽  
Атаханова Ш. С. ◽  
Соатов Ф. Й.

In article researches on establishment of influence of geological and technology factors on efficiency of investment projects, determination of risks at implementation of investment projects in the oil and gas industry and feature and factors for successful implementation of investment projects are considered.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kristin Yeoman ◽  
Mary B. O’Connor ◽  
Sara Sochor ◽  
Gerald Poplin

Abstract Background Transportation events are the most common cause of offshore fatalities in the oil and gas industry, of which helicopter accidents comprise the majority. Little is known about injury distributions in civilian helicopter crashes, and knowledge of injury distributions could focus research and recommendations for enhanced injury prevention and post-crash survival. This study describes the distribution of injuries among fatalities in Gulf of Mexico oil and gas industry-related helicopter accidents, provides a detailed injury classification to identify potential areas of enhanced safety design, and describes relevant safety features for mitigation of common injuries. Methods Decedents of accidents during 2004–2014 were identified, and autopsy reports were requested from responsible jurisdictions. Documented injuries were coded using the Abbreviated Injury Scale (AIS), and frequency and proportion of injuries by AIS body region and severity were calculated. Injuries were categorized into detailed body regions to target areas for prevention. Results A total of 35 autopsies were coded, with 568 injuries documented. Of these, 23.4% were lower extremity, 22.0% were thorax, 13.6% were upper extremity, and 13.4% were face injuries. Minor injuries were most prevalent in the face, neck, upper and lower extremities, and abdomen. Serious or worse injuries were most prevalent in the thorax (53.6%), spine (50.0%), head (41.7%), and external/other regions (75.0%). The most frequent injuries by detailed body regions were thoracic organ (23.0%), thoracic skeletal (13.3%), abdominal organ (9.6%), and leg injuries (7.4%). Drowning occurred in 13 (37.1%) of victims, and drowning victims had a higher proportion of moderate brain injuries (7.8%) and lower number of documented injuries (3.8) compared with non-drowning victims (2.9 and 9.4%, respectively). Conclusions Knowledge of injury distributions focuses and prioritizes the need for additional safety features not routinely used in helicopters. The most frequent injuries occurred in the thorax and lower extremity regions. Future research requires improved and expanded data, including collection of detailed data to allow characterization of both injury mechanism and distribution. Improved safety systems including airbags and helmets should be implemented and evaluated for their impact on injuries and fatalities.


Author(s):  
Marco Mariottini ◽  
Nicola Pieroni ◽  
Pietro Bertini ◽  
Beniamino Pacifici ◽  
Alessandro Giorgetti

Abstract In the oil and gas industry, manufacturers are continuously engaged in providing machines with improved performance, reliability and availability. First Stage Bucket is one of the most critical gas turbine components, bearing the brunt of very severe operating conditions in terms of high temperature and stresses; aeromechanic behavior is a key characteristic to be checked, to assure the absence of resonances that can lead to damage. Aim of this paper is to introduce a method for aeromechanical verification applied to the new First Stage Bucket for heavy duty MS5002 gas turbine with integrated cover plates. This target is achieved through a significantly cheaper and streamlined test (a rotating test bench facility, formally Wheel Box Test) in place of a full engine test. Scope of Wheel Box Test is the aeromechanical characterization for both Baseline and New bucket, in addition to the validation of the analytical models developed. Wheel Box Test is focused on the acquisition and visualization of dynamic data, simulating different forcing frequencies, and the measurement of natural frequencies, compared with the expected results. Moreover, a Finite Elements Model (FEM) tuning for frequency prediction is performed. Finally, the characterization of different types of dampers in terms of impact on frequencies and damping effect is carried out. Therefore, in line with response assessment and damping levels estimation, the most suitable damper is selected. The proposed approach could be extended for other machine models and for mechanical audits.


SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 2195-2208 ◽  
Author(s):  
Siti Nur Shaffee ◽  
Paul F. Luckham ◽  
Omar K. Matar ◽  
Aditya Karnik ◽  
Mohd Shahrul Zamberi

Summary In many industrial processes, an effective particle–filtration system is essential for removing unwanted solids. The oil and gas industry has explored various technologies to control and manage excessive sand production, such as by installing sand screens or injecting consolidation chemicals in sand–prone wells as part of sand–management practices. However, for an unconsolidated sandstone formation, the selection and design of effective sand control remains a challenge. In recent years, the use of a computational technique known as the discrete–element method (DEM) has been explored to gain insight into the various parameters affecting sand–screen–retention behavior and the optimization of various types of sand screens (Mondal et al. 2011, 2012, 2016; Feng et al. 2012; Wu et al. 2016). In this paper, we investigate the effectiveness of particle filtration using a fully coupled computational–fluid–dynamics (CFD)/DEM approach featuring polydispersed, adhesive solid particles. We found that an increase in particle adhesion reduces the amount of solid in the liquid filtrate that passes through the opening of a wire–wrapped screen, and that a solid pack of particle agglomerates is formed over the screen with time. We also determined that increasing particle adhesion gives rise to a decrease in packing density and a diminished pressure drop across the solid pack covering the screen. This finding is further supported by a Voronoi tessellation analysis, which reveals an increase in porosity of the solid pack with elevated particle adhesion. The results of this study demonstrate that increasing the level of particle agglomeration, such as by using an adhesion–promoting chemical additive, has beneficial effects on particle filtration. An important application of these findings is the design and optimization of sand–control processes for a hydrocarbon well with excessive sand production, which is a major challenge in the oil and gas industry.


Author(s):  
Arihant Sonawat ◽  
Abdus Samad ◽  
Afshin Goharzadeh

Flaring and venting contributes significantly to greenhouse gas emissions and environmental pollution in the upstream oil and gas industry. Present work focuses on a horizontal flow, multiphase ejector used for recovery of these flared gases. The ejector typically handles these gases being entrained by high pressure well head fluid and a comprehensive understanding is necessary to design and operate such recovery system. A CFD based analysis of the flow through the ejector has been reported in this paper. The flow domain was meshed and the mass and momentum equations for fluid flow were solved using commercial software CFX (v14.5). Euler-Euler multiphase approach was used to model different phases. The entrainment behavior of the ejector was investigated and compared for different fluid flow conditions. It was observed that for a fixed primary fluid flow rate, the entrained or secondary flow rate decreased linearly with an increase in pressure difference between exit and suction pressure. The higher was primary flow rate, the greater was the suction created ahead of the primary nozzle and greater was the amount of energy added to the entrained fluid.


Sand productions are inclusive of various types of major key challenges for gas and oil productions as the sand managements are rapidly growing in becoming significant to manage wells of high rates. Since approximately 70% of gas as well oil reserves around the globe are sand formations Sand production is an unavoidable by-product in oil and gas industry as 70% gas and oil reserves of the world oil are sand formation. Transportation of the particles from the wellbore to the surface will cause the damage to the amenities and tools. Wells producing gas and oils can potentially fail because of the erosion of the major solid particles. It can be illustrated through an example like producing wells having considerable amount of production of sand might affect negatively over the fitting and components of the pipeline, well tubing as well as the equipment used for the production. Thus can cause highly priced potential ecofriendly damages, equipment loss and downtime production. The current study provides outcomes gathered through examining and analyzing various factors for determining the severities and amount of the erosion of sand over the pipe bend. To solve the phenomena of the flow of the fluid, this study has used CFD. To design the pipe’s elbow, CATIA-V5 is brought in use and meshing is done with the help of the ANSYS. Different cases will be studied here by varying the percentage of water and EG with respect to sand particle size 160m and 370m. Erosion rate, Skin friction Coefficient and Swirl velocity are the three major effects which will be studied further. Through the observation of the study, it can be said that material’s character and flow velocity are the predominant factors which might affect the rate of sand erosion within the pipelines. The observation is made over every factor and is also analyzed.


Author(s):  
Adriana Almeida Cutrim ◽  
Margarita Bobadilla ◽  
Kleberson R. Oliveira Pereira ◽  
Fabio Jose Esper ◽  
Guillermo Ruperto Martin Cortes ◽  
...  

2017 ◽  
Vol 2 (2) ◽  
Author(s):  
I M Momoh ◽  
O A Adeyemi ◽  
O M Oluwafemi ◽  
O D Ogundare ◽  
S I Salawu

This work involves the use of submerged arc welding (SAW) technique in joining heat treated steel in alternate arrangement. The selected as-received steel was initially cut, machined and heat treated to develop a conventional microstructure prior to joining operation. All samples were subsequently characterized to investigate the effect of the process on the mechanical behaviors. 3360 Instron Universal Tensile testing machine was used for the tensile properties evaluation; Vickers’ microhardness testing machine was also used for the hardness evaluation at various zones. From the result, it was found that interchanging arrangement of the microstructures during welding yield better combined properties of the ultimate tensile strength, yield strength and with improvement in the strain-to-fracture of some of the samples. The adopted mechanism was also observed to yield better hardness property on the sample. This led to the recommendation of this technique to the oil and gas industry that need to transport their products via the giant water bodies to clients.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3082
Author(s):  
Anna Król ◽  
Monika Gajec ◽  
Ewa Kukulska-Zając

In the oil and gas industry, tracers are used to estimate residual oil saturation, to indicate the location and orientation of fractures in tight reservoirs, to identify and mark the direction of fluid flow in fractured deposits, to locate faults and discontinuities, and to measure fluid movement in injection wells during drilling. The tracers should behave in a mechanically similar manner to the tested substance, e.g., formation waters, oil or gas, and, on the other hand, they should significantly differ from them in terms of chemical properties so that it is possible to identify them. One of the fluorescent tracers used in the oil and gas industry, e.g., for inter-well tests during secondary or tertiary production methods (especially during reservoir hydration), is uranine. In order to assess the effectiveness of fluid movement measurements, it is necessary to determine the uranine content in formation waters. In this study, a method was developed to determine uranine in formation water samples using high-performance liquid chromatography with fluorescence detection (HPLC/FLD). The initial step in preparing samples for chromatographic analysis would be solid phase extraction (SPE). The method was validated and allows for the determination of uranine in formation water samples in the concentration range from 0.030 to 2.80 µg/L. The validation of the method included the analysis of factors influencing the measurement result (sources of uncertainty), determination of the linearity range of the standard curve, determination of the quantification limit of the method, and verification of the reproducibility, selectivity, stability and correctness achieved. The method developed within the study can be successfully applied in the case of the determination of uranine content in formation water samples from the oil and gas mining industry, which are often unstable and characterized by a relatively complex matrix. After validation, the method will also be applicable to the determination of uranine in matrices with a similar physicochemical composition, e.g., to assess groundwater flow in deformed carbonate aquifers or to characterize faults that act as barriers to horizontal groundwater flow.


Sign in / Sign up

Export Citation Format

Share Document