Effect of Rotating Speed on Performance of Electrical Submersible Pump

Author(s):  
Yang Yang ◽  
Ling Zhou ◽  
Weidong Shi ◽  
Chuan Wang ◽  
Wei Li ◽  
...  

Abstract High speed rotating pump is the current trend in pump’s development and application, which has the advantages of compact size and energy-saving features. The electrical submersible pump, typically called an ESP, is an efficient and reliable artificial-lift method for lifting moderate to high volumes of fluids from wellbores, which have been wildly used for oil or groundwater extraction. To verify the similarity of pump performance under different rotating speeds, a typical ESP is selected as the model pump. By employing the numerical simulation and performance testing methods, the external performance characteristics and internal flow fields under different rotating speeds of the pump are studied. The entire computational domain is established by two stages ESP, and then meshed with the high-quality structured grid based on the Q-type and Y-type block topology. Grid sensitivity analysis is carried out to determine the appropriate mesh density for mesh independent solution. SST k-ω turbulence model with standard wall function in conjunction with Reynolds-Averaged Navier-Stokes (RANS) equations is used to solve the steady flow field. The results show that the increase in the rotating speed could increase the ESP’s head significantly. ESP’s external characteristics under different speeds meet the similar conversion rule quite well. In addition, the flow field distributions in the main flow components of the pump have great similarity at different rotating speeds. The experimental test results for a prototype show good agreement with the simulation results, including the pump’s head, efficiency and axial force. This paper provides a data set for further understanding of the effects of rotating speeds on ESP’s performance and inner flow fields.

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1116 ◽  
Author(s):  
Ling Zhou ◽  
Wanhong Wang ◽  
Jianwei Hang ◽  
Weidong Shi ◽  
Hao Yan ◽  
...  

The end clearance of the impeller is one of the most important structural parameters in the hydraulic design of a high-speed electrical submersible pump (ESP). In this paper, an ESP with a rotating speed of 6000 r/min was taken as the research object. Numerical calculations were carried out for five different end clearance conditions of 0.1 mm, 0.3 mm, 0.6 mm, 0.9 mm, and 1.2 mm, respectively, to obtain the performance and internal flow field under different situation. The simulation results were verified by the pump performance experiment. It showed that the increase of the end clearance led to a decrease of the head and efficiency of the electrical submersible pump. Through the analysis of the internal flow field, it was found that the existence of the end clearance reduced the flow rate and caused free pre-whirl. With the increase of the end clearance, the phenomenon of de-flow in the diffuser passage was aggravated, which further reduced the performance of the electrical submersible pump. Finally, the reasonable recommended value of the end clearance was given, which facilitated the optimization design and engineering application of the high-speed ESP.


Author(s):  
Tom Gerhard ◽  
Michael Sturm ◽  
Thomas H. Carolus

State-of-the-art wind turbine performance prediction is mainly based on semi-analytical models, incorporating blade element momentum (BEM) analysis and empirical models. Full numerical simulation methods can yield the performance of a wind turbine without empirical assumptions. Inherent difficulties are the large computational domain required to capture all effects of the unbounded ambient flow field and the fact that the boundary layer on the blade may be transitional. A modified turbine design method in terms of the velocity triangles, Euler’s turbine equation and BEM is developed. Lift and drag coefficients are obtained from XFOIL, an open source 2D design and analysis tool for subcritical airfoils. A 3 m diameter horizontal axis wind turbine rotor was designed and manufactured. The flow field is predicted by means of a Reynolds-averaged Navier-Stokes simulation. Two turbulence models were utilized: (i) a standard k-ω-SST model, (ii) a laminar/turbulent transition model. The manufactured turbine is placed on the rooftop of the University of Siegen. Three wind anemometers and wind direction sensors are arranged around the turbine. The torque is derived from electric power and the rotational speed via a calibrated grid-connected generator. The agreement between the analytically and CFD-predicted kinematic quantities up- and downstream of the rotor disc is quite satisfactory. However, the blade section drag to lift ratio and hence the power coefficient vary with the turbulence model chosen. Moreover, the experimentally determined power coefficient is considerably lower as predicted by all methods. However, this conclusion is somewhat preliminary since the existing experimental data set needs to be extended.


Author(s):  
Rui Gao ◽  
Li Shen ◽  
Kwee-Yan Teh ◽  
Penghui Ge ◽  
Fengnian Zhao ◽  
...  

Proper Orthogonal Decomposition (POD) offers an approach to quantify cycle-to-cycle variation (CCV) of the flow field inside the internal combustion engine cylinder. POD decomposes instantaneous flow fields (also called snapshots) into a series of orthonormal flow patterns (called POD modes) and the corresponding mode coefficients. The POD modes are rank-ordered by decreasing kinetic energy content, and the low-order, high-energy modes are interpreted as constituting the large-scale coherent flow structure that varies from engine cycle to engine cycle. Various POD-based analysis techniques have thus been proposed to characterize engine flow field CCV using these low-order modes. The validity of such POD-based analyses rests, as a matter of course, on the reliability of the underlying POD results (modes and coefficients). Yet a POD mode can be disproportionately skewed by a single outlier snapshot within a large data set, and an algorithm exists to define and identify such outliers. In this paper, the effects of a candidate outlier snapshot on the results of POD-based conditional averaging and quadruple POD analyses are examined for two sets of crank angle-resolved flow fields on the mid-tumble plane of an optical engine cylinder recorded by high-speed particle image velocimetry. The results with and without the candidate outlier are compared and contrasted. In the case of POD-based conditional averaging, the presence of the outlier scrambles the composition of snapshot subsets that define large-scale flow pattern variations, and thus substantially alters the coherent flow structures that are identified; for quadruple POD, the shape of coherent structures as well as the number of modes to define them are not significantly affected by the outlier.


2015 ◽  
Author(s):  
Ariful I. Bhuiyan ◽  
Stewart Reed ◽  
Barnabas Nemec ◽  
Dale Henson

2019 ◽  
Vol 10 ◽  
pp. 82-86
Author(s):  
A.N. Ivanov ◽  
◽  
V.A. Bondarenko ◽  
M.M. Veliev ◽  
E.V. Kudin ◽  
...  

2021 ◽  
Vol 229 ◽  
pp. 108975
Author(s):  
R.H.R. Gutiérrez ◽  
U.A. Monteiro ◽  
C.O. Mendonça

Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 475
Author(s):  
Yin-An Wang ◽  
Xiao-Peng Xie ◽  
Xiao-Hui Lu

Spray painting robots equipped with air spray guns have been widely used in the painting industry. In view of the low efficiency of single-nozzle air spray guns when spraying large targets, a new double-nozzle air spray gun structure was designed in this paper based on the Coanda effect of double jets. Firstly, a 3-D physical model of the double-nozzle air spray gun was built in Solidworks, in which unstructured grids were generated for the computational domain by ICEM. Secondly, the spray painting process was numerically modeled with the help of the computational fluid dynamics (CFD) software ANSYS-Fluent 16.0. The two-phase spray flow was calculated by coupling a discrete phase model (DPM) and the Taylor analogy breakup (TAB) method. The TAB model was applied to predict the secondary break-up. The DPM model was applied to predict the droplet trajectories. The geometry of an air spray gun has a significant influence on the spray flow field characteristics. The influence of the air spray gun geometry on the interference spray flow field characteristics and coating film thickness distribution were investigated by changing the values of the distance between the centers of the two paint holes (L) and the angle between the axes of the two paint holes (θ). Numerical results show that the smaller L and θ are, the stronger the interference effect between the two jets, while the more concentrated the paint is in the central region of the target surface, the easier it is for overspray to occur. With increasing L and θ, the interference effect gradually decreased and the extension distance of the coating film along the x-axis gradually increased. However, if L and θ are too large, the interference effect will become too weak and the shape of the coating film will become a concave, with more paint on both side regions and less paint in the central region, which will cause an uneven coating film. From the simulation results, it can be concluded that a more uniform coating film can be obtained when L = 30 mm and θ = 10°. The effective coating width of the double-nozzle air spray gun was increased by 85.7% compared with the single-nozzle air spray gun, which improved the spraying efficiency.


Author(s):  
Yi Han ◽  
Feng Liu ◽  
Xin Ran

In the production process of large-diameter seamless steel pipes, the blank heating quality before roll piercing has an important effect on whether subsequently conforming piping is produced. Obtaining accurate pipe blank heating temperature fields is the basis for establishing and optimizing a seamless pipe heating schedule. In this paper, the thermal process in a regenerative heating furnace was studied using fluent software, and the distribution laws of the flow field in the furnace and of the temperature field around the pipe blanks were obtained and verified experimentally. The heating furnace for pipe blanks was analyzed from multiple perspectives, including overall flow field, flow fields at different cross sections, and overall temperature field. It was found that the changeover process of the regenerative heating furnace caused the temperature in the upper part of the furnace to fluctuate. Under the pipe blanks, the gas flow was relatively thin, and the flow velocity was relatively low, facilitating the formation of a viscous turbulent layer and thereby inhibiting heat exchange around the pipe blanks. The mutual interference between the gas flow from burners and the return gas from the furnace tail flue led to different flow velocity directions at different positions, and such interference was relatively evident in the middle part of the furnace. A temperature “layering” phenomenon occurred between the upper and lower parts of the pipe blanks. The study in this paper has some significant usefulness for in-depth exploration of the characteristics of regenerative heating furnaces for steel pipes.


Sign in / Sign up

Export Citation Format

Share Document