Predictive Model for Two-Phase Flow Performance of Mixed Flow Pumps

Author(s):  
Abhay Patil ◽  
Burak Ayyildiz ◽  
Sahand Pirouzpanah ◽  
Adolfo Delgado ◽  
Gerald Morrison

Abstract Multiphase pumps are increasingly being used to transport gas-liquid multiphase flow in the oil and gas industry. Complexity of two-phase flow interaction and varying designs of multiphase pumps pose significant challenges to developing generalized performance prediction tool similar to the affinity laws. The goal of this study is to characterize the performance of two multiphase pumps with different specific speeds using experimental data to develop generalized prediction models. Initially, the performance is investigated in the terms of head, power input and efficiency for different Gas Volume Fractions (GVF). Dimensional analysis is performed to evaluate the effect of pump geometry and GVF. Head degradation due to the presence of gas is presented in the terms of dimensionless numbers. These numbers represent the systematic change in the energy loss due to two phase flow interaction and inherent characteristics of the pump design. This is utilized to develop a generalized model for two phase flow. The study is concluded by validating the model using experimental data.

Data in Brief ◽  
2018 ◽  
Vol 16 ◽  
pp. 527-530 ◽  
Author(s):  
Abdalellah O. Mohmmed ◽  
Mohammad S. Nasif ◽  
Hussain H. Al-Kayiem

2017 ◽  
Vol 53 (1) ◽  
pp. 199-221 ◽  
Author(s):  
Abdullah Cihan ◽  
Jens Birkholzer ◽  
Luca Trevisan ◽  
Ana Gonzalez-Nicolas ◽  
Tissa Illangasekare

SPE Journal ◽  
2011 ◽  
Vol 16 (04) ◽  
pp. 921-930 ◽  
Author(s):  
Antonin Chapoy ◽  
Rod Burgass ◽  
Bahman Tohidi ◽  
J. Michael Austell ◽  
Charles Eickhoff

Summary Carbon dioxide (CO2) produced by carbon-capture processes is generally not pure and can contain impurities such as N2, H2, CO, H2 S, and water. The presence of these impurities could lead to challenging flow-assurance issues. The presence of water may result in ice or gas-hydrate formation and cause blockage. Reducing the water content is commonly required to reduce the potential for corrosion, but, for an offshore pipeline system, it is also used as a means of preventing gas-hydrate problems; however, there is little information on the dehydration requirements. Furthermore, the gaseous CO2-rich stream is generally compressed to be transported as liquid or dense-phase in order to avoid two-phase flow and increase in the density of the system. The presence of impurities will also change the system's bubblepoint pressure, hence affecting the compression requirement. The aim of this study is to evaluate the risk of hydrate formation in a CO2-rich stream and to study the phase behavior of CO2 in the presence of common impurities. An experimental methodology was developed for measuring water content in a CO2-rich phase in equilibrium with hydrates. The water content in equilibrium with hydrates at simulated pipeline conditions (e.g., 4°C and up to 190 bar) as well as after simulated choke conditions (e.g., at -2°C and approximately 50 bar) was measured for pure CO2 and a mixture of 2 mol% H2 and 98 mol% CO2. Bubblepoint measurements were also taken for this binary mixture for temperatures ranging from -20 to 25°C. A thermodynamic approach was employed to model the phase equilibria. The experimental data available in the literature on gas solubility in water in binary systems were used in tuning the binary interaction parameters (BIPs). The thermodynamic model was used to predict the phase behavior and the hydrate-dissociation conditions of various CO2-rich streams in the presence of free water and various levels of dehydration (250 and 500 ppm). The results are in good agreement with the available experimental data. The developed experimental methodology and thermodynamic model could provide the necessary data in determining the required dehydration level for CO2-rich systems, as well as minimum pipeline pressure required to avoid two-phase flow, hydrates, and water condensation.


Author(s):  
Christoph Homann ◽  
Wolfgang Hering ◽  
Alexei Miassoedov ◽  
Leo Sepold

The QUENCH program, performed at Forschungszentrum Karlsruhe, Germany, is dedicated to out-of-pile studies of the initiation and progression of damage during core reflood of a degraded commercial nuclear reactor. Main work in this program is spent on the investigation of the material behavior of the solid structures. However, for the deeper understanding of the integral tests, especially of the quench phase, as well as for computational support of the tests and for the validation of severe accident codes, a sufficient knowledge of thermal-hydraulics in the bundle during the quench phase is also mandatory. Though much instrumentation is available in the test section, information to interpret thermal-hydraulics is scare due to principal and technical reasons. The main objective of the present paper is to get a better idea of the reflood process, based on all available experimental data. For this purpose, the test QUENCH-06 is used because of the amount of available qualified experimental data and because of its special importance for code validation, this test being selected as OECD International Standard Problem (ISP) no. 45. At reflood initiation of QUENCH-06, some irregularity of water injection occurred due to the malfunction of a check valve. A thorough inspection and comparison of experimental data is presented in this paper to clarify details of the start of the quench phase. It is complemented by still more detailed computations with the in-house version of SCDAP/RELAP5 mod 3.2 than at the time of ISP-45. Apart from its relevance for this special test and for ISP-45, this work sheds light on the consistency of the involved experimental data. Besides to this investigation, the transition from two- to single-phase flow is examined in more detail than before, giving indications for the axial extension of the two-phase flow region with large droplets or a sensible fluid fraction and for the duration of two-phase flow near saturation temperature. Again, the consistency of data of various instrumentations is assessed. Despite of this success, a better instrumentation for thermal-hydraulics, mainly of void sensors in the lower part of the bundle, is desirable to facilitate interpretation of thermal-hydraulic aspects of the tests.


1985 ◽  
Vol 107 (1) ◽  
pp. 142-151 ◽  
Author(s):  
J. P. Langlinais ◽  
A. T. Bourgoyne ◽  
W. R. Holden

The calculation of single-phase and two-phase flowing pressure gradients in a well annulus is generally based on an extension of empirical correlations developed for Newtonian fluids in circular pipes. Various techniques for extending pipe flow correlations to an annular geometry have been presented in the literature which involve the representation of the annular well geometry with an equivalent circular diameter and the representation of non-Newtonian fluid behavior with an apparent Newtonian viscosity. Unfortunately, little experimental data have been available which would allow a comparison of the relative accuracy of the various proposed techniques. In this study, experimental pressure gradient data have been taken in two 6000-ft wells. Frictional pressure losses for single-phase flow (mud only) in two annuli were compared to values predicted by the Bingham plastic and power law models. These calculations utilized the equivalent diameters defined by the Crittendon criteria, the hydraulic diameter, and the slot approximation. Also, total pressure difference for two-phase flow was measured for one annular geometry. This data was compared to that predicted by the Poettmann and Carpenter, Hagedorn and Brown, Orkiszewski, and Beggs and Brill correlations. Comparison of experimental data with the various prediction techniques was favorable, each having advantage in certain situations. For the data investigated, the Crittendon criteria using a Bingham plastic model gave the best results. The two-phase flow data was best predicted by the Hagedorn and Brown correlation utilizing an equivalent hydraulic diameter.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Jorge Pérez Mañes ◽  
Victor Hugo Sánchez Espinoza ◽  
Sergio Chiva Vicent ◽  
Michael Böttcher ◽  
Robert Stieglitz

This paper deals with the validation of the two-phase flow models of the CFD code NEPTUNEC-CFD using experimental data provided by the OECD BWR BFBT and PSBT Benchmark. Since the two-phase models of CFD codes are extensively being improved, the validation is a key step for the acceptability of such codes. The validation work is performed in the frame of the European NURISP Project and it was focused on the steady state and transient void fraction tests. The influence of different NEPTUNE-CFD model parameters on the void fraction prediction is investigated and discussed in detail. Due to the coupling of heat conduction solver SYRTHES with NEPTUNE-CFD, the description of the coupled fluid dynamics and heat transfer between the fuel rod and the fluid is improved significantly. The averaged void fraction predicted by NEPTUNE-CFD for selected PSBT and BFBT tests is in good agreement with the experimental data. Finally, areas for future improvements of the NEPTUNE-CFD code were identified, too.


Author(s):  
Wenchao Zhang ◽  
Sichao Tan ◽  
Puzhen Gao

Two-phase natural circulation flow instability under rolling motion condition was studied experimentally and theoretically. Experimental data were analyzed with nonlinear time series analysis methods. The embedding dimension, correlation dimension and K2 entropy were determined based on phase space reconstruction theory and G-P method. The maximal Lyapunov exponent was calculated according to the methods of small data sets. The nonlinear features of the two phase flow instability under rolling motion were analyzed with the results of geometric invariants coupling with the experimental data. The results indicated that rolling motion strengthened the nonlinear characteristics of two phase flow instability. Some typical nonlinear phenomena such as period-doubling bifurcations and chaotic oscillations were found in different cases.


2005 ◽  
Vol 127 (4) ◽  
pp. 479-486
Author(s):  
Bin Liu ◽  
Mauricio Prado

For any pumping artificial lift system in the petroleum industry, the free gas significantly affects the performance of the pump and the system above the pump. A model, though not a complete two-phase flow model, has been developed for the effective prediction of separation efficiency across a wide range of production conditions. The model presented is divided into two main parts, the single-phase flow-field solution and the bubble-tracking method. The first part of the model solves the single-phase liquid flow field using the computational fluid dynamics approach. Then, a simple bubble-tracking method was applied to estimate the down-hole natural separation efficiency for two-phase flow. A comparison between the results of the model and the experimental data was conducted. It shows a very good agreement with the experimental data for lower gas void fractions (bubble flow regime).


Sign in / Sign up

Export Citation Format

Share Document