Active Vibration Control for the Closed Loop Flexible Mechanisms Combined the Feedback and Feed-Forward Strategy: Part 1 — Modelling

Author(s):  
Zhang Xianmin ◽  
Chao Changjian

Abstract A methodology for suppressing the elastodynamic response of high speed closed loop flexible mechanisms with piezoelectric actuators and sensors are developed. In this part, a mixed variational approach with Hamilton’s principle is developed to derive the equations of motion for the closed loop flexible mechanism systems which describes the motion of the mechanisms and the behavior of the piezoelectric apparatus. This model includes both the rigid-body and the elastic motion coupling terms and the elasto-dynamics and piezoelectricity coupling terms as well as the effects of the actuators and sensors upon the mass and stiffness of the system.

Author(s):  
Mark Jansen ◽  
Gerald Montague ◽  
Andrew Provenza ◽  
Alan Palazzolo

Closed loop operation of a single, high temperature magnetic radial bearing to 30,000 RPM (2.25 million DN) and 540°C (1,000°F) is discussed. Also, high temperature, fault tolerant operation for the three axis system is examined. A novel, hydrostatic backup bearing system was employed to attain high speed, high temperature, lubrication free support of the entire rotor system. The hydrostatic bearings were made of a high lubricity material and acted as journal-type backup bearings. New, high temperature displacement sensors were successfully employed to monitor shaft position throughout the entire temperature range and are described in this paper. Control of the system was accomplished through a stand alone, high speed computer controller and it was used to run both the fault-tolerant PID and active vibration control algorithms.


Author(s):  
Zhang Xianmin ◽  
Chao Changjian

Abstract On the basis of the complex mode theory and the equations of motion of the flexible mechanisms developed in part 1, a hybrid independent modal controller is presented, which is composed of state feedback and disturbance feed-forward control laws. As an illustrative example, the strategy is used to control the elastic vibration response of a four-bar linkage mechanism. The imitative computational result shows that the vibration is efficiently suppressed.


2005 ◽  
Vol 128 (2) ◽  
pp. 256-260 ◽  
Author(s):  
Xianmin Zhang ◽  
Arthur G. Erdman

The optimal placement of sensors and actuators in active vibration control of flexible linkage mechanisms is studied. First, the vibration control model of the flexible mechanism is introduced. Second, based on the concept of the controllability and the observability of the controlled subsystem and the residual subsystem, the optimal model is developed aiming at the maximization of the controllability and the observability of the controlled modes and minimization of those of the residual modes. Finally, a numerical example is presented, which shows that the proposed method is feasible. Simulation analysis shows that to achieve the same control effect, the control system is easier to realize if the sensors and actuators are located in the optimal positions.


2008 ◽  
Vol 47-50 ◽  
pp. 137-140 ◽  
Author(s):  
Jung Woo Sohn ◽  
Seung Bok Choi

In this paper, active vibration control performance of the smart hull structure with Macro-Fiber Composite (MFC) is evaluated. The governing equations of motion of the hull structure with MFC actuators are derived based on the classical Donnell-Mushtari shell theory. Subsequently, modal characteristics are investigated and compared with the results obtained from finite element analysis and experiment. The governing equations of vibration control system are then established and expressed in the state space form. Linear Quadratic Gaussian (LQG) control algorithm is designed in order to effectively and actively control the imposed vibration. The controller is experimentally realized and control performances are evaluated.


1995 ◽  
Vol 117 (4) ◽  
pp. 767-776 ◽  
Author(s):  
P. Tang ◽  
A. B. Palazzolo ◽  
A. F. Kascak ◽  
G. T. Montague

An integrated, compact piezohydraulic actuator system for active vibration control was designed and developed with a primary application for gas turbine aircraft engines. Copper tube was chosen as the transmission line material for ease of assembly. Liquid plastic, which meets incompressibility and low-viscosity requirements, was adjusted to provide optimal actuator performance. Variants of the liquid plastic have been prepared with desired properties between −40°F and 400°F. The effectiveness of this hybrid actuator for active vibration control (AVC) was demonstrated for suppressing critical speed vibration through two critical speeds for various levels of intentionally placed imbalance. A high-accuracy closed-loop simulation, which combines both finite element and state space methods, was applied for the closed-loop unbalance response simulation with/without AVC. Good correlation between the simulation and test results was achieved.


2019 ◽  
Vol 24 (3) ◽  
pp. 608-615 ◽  
Author(s):  
Miroslav Pawlenka ◽  
Miroslav Mahdal ◽  
Jiri Tuma ◽  
Adam Burecek

This study concerns the active vibration control of journal bearings, which are also known as sliding bearings. The control system contains a non-rotating loose bushing, the position of which is controlled by piezoelectric actuators. For governing the respective orthogonal direction of the journal motion, the control algorithm realizes a proportional controller in parallel with a bandpass filter of the IIR type. The bandpass filter is of the second order and its centre frequency is self-tuned to be the same as the whirl frequency that results from the instability of the bearing journal due to the oil film. The objective of active vibration control is to achieve the highest operational speed of the journal bearing at which the motion of the rotor is stable. The control algorithm for the active vibration control is implemented in Simulink and realized in a dSPACE control system.


2002 ◽  
Vol 2002.77 (0) ◽  
pp. _12-23_-_12-24_
Author(s):  
Takenori KUBO ◽  
Hiroshi MATSUHISA ◽  
Kenji UTSUNOMIYA

Sign in / Sign up

Export Citation Format

Share Document