Inertia Effects in Squeeze-Film Damper Bearings Generated by Circumferential Oil Supply Groove

Author(s):  
Jørgen W. Lund ◽  
Claus M. Myllerup ◽  
Henning Hartmann

Abstract The dynamic properties of an industrial Squeeze-Film Damper (SFD) bearing design are described using the well-known perturbation approach, where the reaction forces induced by small movements away from the position of equilibrium are expanded into a Taylor series in terms of displacement, velocity, and acceleration. Although generally negligible, the acceleration term can become significant in SFD bearings when inertia effects in the damper lands are enhanced by the flow in a central circumferential oil supply groove. By using a bulk flow approximation in the oil supply groove an explicit expression is derived for the acceleration term. Experimental results confirm the significance of the oil supply groove geometry and appear to validate the bulk flow approximation.

2003 ◽  
Vol 125 (4) ◽  
pp. 495-499 ◽  
Author(s):  
Jørgen W. Lund ◽  
Claus M. Myllerup ◽  
Henning Hartmann

The dynamic properties of an industrial Squeeze-Film Damper (SFD) bearing design are described using the well-known perturbation approach, where the reaction forces induced by small movements away from the position of equilibrium are expanded into a Taylor series in terms of displacement, velocity, and acceleration. Although generally negligible, the acceleration term can become significant in SFD bearings when inertia effects in the damper lands are enhanced by the flow in a central circumferential oil supply groove. By using a bulk flow approximation in the oil supply groove an explicit expression is derived for the acceleration term. Experimental results confirm the significance of the oil supply groove geometry and appear to validate the bulk flow approximation.


Author(s):  
J. W. Lund ◽  
A. J. Smalley ◽  
J. A. Tecza ◽  
J. F. Walton

Squeeze-film dampers are commonly used in gas turbine engines and have been applied successfully in a great many new designs, and also as retrofits to older engines. Of the mechanical components in gas turbines, squeeze-film dampers are the least understood. Their behavior is nonlinear and strongly coupled to the dynamics of the rotor systems on which they are installed. The design of these dampers is still largely empirical, although they have been the subject of a large number of past investigations. To describe recent analytical and experimental work in squeeze-film damper technology, two papers are planned. This abstract outlines the first paper, Part 1, which concerns itself with squeeze-film damper analysis. This paper will describe an analysis method and boundary conditions which have been developed recently for modelling dampers, and in particular, will cover the treatment of finite length, feed and drain holes and fluid inertia effects, the latter having been shown recently to be of great importance in predicting rotor system behavior. A computer program that solves the Reynolds equation for the above conditions will be described and sample calculation results presented.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Sina Hamzehlouia ◽  
Kamran Behdinan

This work represents a pressure distribution model for finite length squeeze film dampers (SFDs) executing small amplitude circular-centered orbits (CCOs) with application in high-speed turbomachinery design. The proposed pressure distribution model only accounts for unsteady (temporal) inertia terms, since based on order of magnitude analysis, for small amplitude motions of the journal center, the effect of convective inertia is negligible relative to unsteady (temporal) inertia. In this work, the continuity equation and the momentum transport equations for incompressible lubricants are reduced by assuming that the shapes of the fluid velocity profiles are not strongly influenced by the inertia forces, obtaining an extended form of Reynolds equation for the hydrodynamic pressure distribution that accounts for fluid inertia effects. Furthermore, a numerical procedure is represented to discretize the model equations by applying finite difference approximation (FDA) and to numerically determine the pressure distribution and fluid film reaction forces in SFDs with significant accuracy. Finally, the proposed model is incorporated into a simulation model and the results are compared against existing SFD models. Based on the simulation results, the pressure distribution and fluid film reaction forces are significantly influenced by fluid inertia effects even at small and moderate Reynolds numbers.


Author(s):  
Changhu Xing ◽  
Frank Horvat ◽  
Stefan Moldovan ◽  
Minel J. Braun

When cavitation takes place in the squeeze film damper (SFD), its types and extent affect the performance of the SFD significantly. Thus, a fundamental understanding of the incipience, formation and evolution of this phenomenon becomes important both for predicting the dynamic properties of the damper and for the practitioner designers. A test rig was set up to investigate the formation of the cavitation bubbles during the process of a steady-state operation. By adopting a crankshaft configuration, the SFD journal orbit can be fixed at a specified eccentricity. The journal position and its eccentricity are tracked by means of Bently proximity sensors. When cavitation takes place, its shape and evolution are recorded by a Photron APX-RS high speed camera. With the Dow Corning 200 lubricant, the gaseous bubbles form in a fern-leaf shape even at low whirling speed. The bubbles evolve to a miniature flattened shape and as the angular speed increases, the gaseous cavitation gives way or is joined by vaporous cavitation. With a further increase of whirling speed, the vaporous bubbles can be clearly seen to occupy a large area. The evolution of the cavitation can be explained by the Sommerfeld pressure curve as it relates to the gaseous and vaporous saturation pressure. The experimental results confirm the assumption made by these authors in the previous numerical simulations for the homogeneous cavitation models.


2009 ◽  
Vol 53 (1) ◽  
pp. 84-96 ◽  
Author(s):  
Jérôme Gehannin ◽  
Mihai Arghir ◽  
Olivier Bonneau

Author(s):  
Feng He ◽  
Paul E. Allaire ◽  
Saeid Dousti ◽  
Alexandrina Untaroiu

Squeeze film dampers play an important role in the dynamics of modern turbomachinery by improving vibrational response and stability. The present paper develops an effective tool for evaluating the forced response of these systems under parametric changes. A flexible rotor with multiple masses supported on a squeeze film damper at one end is investigated. The forced response of this asymmetrically supported system is obtained using the harmonic balance method with a predictor-corrector procedure. This response is examined with various parameters including unbalance forces with and without fluid inertia effects, unidirectional loads, stiffness of centering spring of the damper and the gyroscopic effects of the disks. The developed tool predicts the nonlinear jump phenomenon of the damper with large unbalance forces, indicates the present of multiple harmonics within the response with high damper eccentricity and shows the insensitivity of the damper to surrounding gyroscopic variation.


1984 ◽  
Vol 106 (1) ◽  
pp. 145-151 ◽  
Author(s):  
C. R. Burrows ◽  
M. N. Sahinkaya ◽  
O. S. Turkay

This paper examines the effect of controlling the oil supply pressure to squeeze-film bearings in applications where these elements are used to provide damping for a light flexible transmission shaft having an arbitrary unbalance mass distribution. The shaft length and diameter selected for the study are typical of those used for helicopter tail rotor transmissions. A computer simulation is undertaken to study the effect of a squeeze-film damper located at: 1) The end supports. 2) Mid-span with undamped end supports. 3) Mid-span with damped end supports. The simulation shows that in this type of application, good vibration control can be achieved by using a squeeze-film damper which is capable of switching between two levels of damping. The feasibility of attaining such a characteristic is examined experimentally.


Author(s):  
Sina Hamzehlouia ◽  
Kamran Behdinan

This work represents closed-form analytical expressions for the operating parameters for short-length open-ended squeeze film dampers, including the lubricant velocity profiles, hydrodynamic pressure distribution, and lubricant reaction forces. The proposed closed-form expressions provide an accelerated calculation of the squeeze film damper parameters, specifically for rotordynamics applications. In order to determine the analytical solutions for the squeeze film damper parameters, the thin film equations for lubricant are introduced in the presence of the influence of lubricant inertia. Subsequently, two different analytical techniques, namely the momentum approximation method, and the perturbation method are applied to the thin film equations. Moreover, the solution for the lubricant flow equations are analytically determined to represent closed-form expressions for the hydrodynamic pressure distribution and the velocity component profiles in squeeze film dampers. Additionally, the expressions for the hydrodynamic pressure distribution are integrated over the journal surface, either numerically or analytically by using Booker’s integrals, to develop expressions for the fluid film reaction forces. Lastly, the developed squeeze film damper models are incorporated into simulation models in Matlab and Simulink®, and the results are compared against a well-established force coefficient model to verify the accuracy of the calculations. The results of the simulations verify the effect of the lubricant inertia components, namely the convective and temporal (i.e., unsteady) inertia components on the squeeze film damper dynamics, including hydrodynamic pressure distribution and fluid film reaction forces. Additionally, the simulation results suggest a close agreement between the proposed models and the results in the literature.


Author(s):  
M C Levesley ◽  
R Holmes

This paper compares the effects on the damping capacity of a squeeze-film damper of (a) changing the number of oil-feed holes to the central circumferential oil supply groove, (b) changing the sealing arrangement from end-seals to piston-ring seals, and (c) changing the position of the circumferential supply groove. The conclusions are that much improved damping performance is achieved by the piston-ring sealed arrangement. Unlike the end-sealed arrangement it is very little adversely influenced by a reduction in the number of oil-feed holes. The damping offered by either sealing arrangement is influenced only marginally by repositioning the supply groove.


Sign in / Sign up

Export Citation Format

Share Document