Theoretical Study on Instability Boundary of Rotor-Hydrodynamic Bearing Systems: Part II — Rotor With External Flexible Damped Support
Abstract The situation of a rotor-hydrodynamic bearing system in external flexible damped support is more complicated than that discussed before in Part I but it can become an alternative means to improve the stability of the rotor system. A model for both vertical and horizontal analysis is built first. Then, the analytical study on the vertical rotor is conducted. The results show that there might be up to four threshold speeds in this configuration that form a consecutive regional pattern taken turns by stable or unstable regions. Furthermore, the numerical calculation by MATLAB is carried out to obtain the results of the horizontal system. The stability maps for various parametric configurations are presented. It has been shown that the value of support damping has a strong effect on the first several lower threshold speeds. But it has little effect on the last top threshold speed which is mainly determined by the portion of journal mass. Within a certain range of external damping value, the first several regions of instability can be reduced or eradicated. As far as the entire stability map is concerned, there is an optimum range of value for support damping that can make the rotor have only one top threshold speed over the entire running speed range. When the support stiffness is increased, the system stability map becomes narrow which means a small support stiffness is good for broadening the range of optimum external damping.