Analysis and Experimental Investigation of the Stability of Intershaft Squeeze Film Dampers—Part 2: Control of Instability

1978 ◽  
Vol 100 (3) ◽  
pp. 558-562 ◽  
Author(s):  
D. H. Hibner ◽  
P. N. Bansal ◽  
D. F. Buono

The results of an analytical and experimental investigation showing the existence of an intershaft viscous damper instability were presented in reference [1]. In the present investigation, a more comprehensive stability analysis is used to study the stability of the test rig which incorporates a modified intershaft bearing support. The analysis is applicable to large multi-mass, rotor-bearing systems and includes the effects of gyroscopic moments, shear deformation, bearing support flexibility, and damping. The results of the stability analysis are presented in the form of system stability maps which clearly indicate the effectiveness of the modification in improving the instability onset speed of the system. Also presented are the results of an experimental investigation which substantiate the analytical predictions.

Author(s):  
H. R. Born

This paper presents an overview of the development of a reliable bearing system for a new line of small turbochargers where the bearing system has to be compatible with a new compressor and turbine design. The first part demonstrates how the increased weight of the turbine, due to a 40 % increase in flow capacity, influences the dynamic stability of the rotor-bearing system. The second part shows how stability can be improved by optimizing important floating ring parameters and by applying different bearing designs, such as profiled bore bearings supported on squeeze film dampers. Test results and stability analyses are included as well as the criteria which led to the decision to choose a squeeze film backed symmetrical 3-lobe bearing for this new turbocharger design.


2001 ◽  
Vol 7 (2) ◽  
pp. 143-151 ◽  
Author(s):  
T. N. Shiau ◽  
J. R. Chang ◽  
S. T. Choi

This paper examines the stability of the steady-state periodic response of a gear pair system supported by squeeze-film dampers. The steady-state response of the system is obtained by using the hybrid technique of Harmonic Balance Method and Time Collocation. The Fioquet-Liapunov theory is used to perform the stability analysis of the first variation equations with periodic coefficients, which is generated by the perturbation technique. The stability charts on gear mesh stiffness, spin ratio, disk unbalance, gravity, and squeeze-film damper are used to perform parameter studies. The numerical results show that the unstable region always occurs when the spin ratio is near the second coupled mode of the gear pair system. Furthermore, the mesh stiffness has a significant influence on the coupled critical speeds. Therefore, it plays an important role in determining the spin ratio stability range.


2006 ◽  
Vol 129 (4) ◽  
pp. 724-729 ◽  
Author(s):  
Albert F. Storace

A modal stability (MS) method is presented for the quick and accurate prediction of the stability of aerodynamically excited turbomachinery using real eigenvalue/eigenvector data obtained from a rotordynamics model. The modal stability method provides a means to compare the work of stabilizing damping forces to the work of destabilizing aerodynamic cross-coupled stiffness forces to predict the onset of whirl instability. The MS method thus indicates that unstable or self-excited whirling (sometimes called whipping) at one of the system’s natural frequencies is initiated when the destabilizing work equals or exceeds the stabilizing work. This approach provides a powerful design tool to quickly ascertain the effects of squeeze-film dampers, and turbine engine architecture, including bearing locations and bearing support structure stiffness, on system stability.


Author(s):  
K. Al-Durgham ◽  
D. D. Lichti ◽  
I. Detchev ◽  
G. Kuntze ◽  
J. L. Ronsky

A fundamental task in photogrammetry is the temporal stability analysis of a camera/imaging-system’s calibration parameters. This is essential to validate the repeatability of the parameters’ estimation, to detect any behavioural changes in the camera/imaging system and to ensure precise photogrammetric products. Many stability analysis methods exist in the photogrammetric literature; each one has different methodological bases, and advantages and disadvantages. This paper presents a simple and rigorous stability analysis method that can be straightforwardly implemented for a single camera or an imaging system with multiple cameras. The basic collinearity model is used to capture differences between two calibration datasets, and to establish the stability analysis methodology. Geometric simulation is used as a tool to derive image and object space scenarios. Experiments were performed on real calibration datasets from a dual fluoroscopy (DF; X-ray-based) imaging system. The calibration data consisted of hundreds of images and thousands of image observations from six temporal points over a two-day period for a precise evaluation of the DF system stability. The stability of the DF system – for a single camera analysis – was found to be within a range of 0.01 to 0.66 mm in terms of 3D coordinates root-mean-square-error (RMSE), and 0.07 to 0.19 mm for dual cameras analysis. It is to the authors’ best knowledge that this work is the first to address the topic of DF stability analysis.


2018 ◽  
Vol 41 (6) ◽  
pp. 1750-1760
Author(s):  
Erkan Kayacan

This paper addresses the Sliding Mode Learning Control (SMLC) of uncertain nonlinear systems with Lyapunov stability analysis. In the control scheme, a conventional control term is used to provide the system stability in compact space while a type-2 neuro-fuzzy controller (T2NFC) learns system behaviour so that the T2NFC completely takes over overall control of the system in a very short time period. The stability of the sliding mode learning algorithm has been proven in the literature; however, it is restrictive for systems without overall system stability. To address this shortcoming, a novel control structure with a novel sliding surface is proposed in this paper, and the stability of the overall system is proven for nth-order uncertain nonlinear systems. To investigate the capability and effectiveness of the proposed learning and control algorithms, the simulation studies have been carried out under noisy conditions. The simulation results confirm that the developed SMLC algorithm can learn the system behaviour in the absence of any mathematical model knowledge and exhibit robust control performance against external disturbances.


Author(s):  
Zenglin Guo ◽  
R. Gordon Kirk

Abstract The situation of a rotor-hydrodynamic bearing system in external flexible damped support is more complicated than that discussed before in Part I but it can become an alternative means to improve the stability of the rotor system. A model for both vertical and horizontal analysis is built first. Then, the analytical study on the vertical rotor is conducted. The results show that there might be up to four threshold speeds in this configuration that form a consecutive regional pattern taken turns by stable or unstable regions. Furthermore, the numerical calculation by MATLAB is carried out to obtain the results of the horizontal system. The stability maps for various parametric configurations are presented. It has been shown that the value of support damping has a strong effect on the first several lower threshold speeds. But it has little effect on the last top threshold speed which is mainly determined by the portion of journal mass. Within a certain range of external damping value, the first several regions of instability can be reduced or eradicated. As far as the entire stability map is concerned, there is an optimum range of value for support damping that can make the rotor have only one top threshold speed over the entire running speed range. When the support stiffness is increased, the system stability map becomes narrow which means a small support stiffness is good for broadening the range of optimum external damping.


1998 ◽  
Vol 120 (2) ◽  
pp. 397-404 ◽  
Author(s):  
L. San Andre´s ◽  
D. Lubell

Squeeze film dampers (SFDs) provide vibration attenuation and structural isolation to aircraft gas turbine engines which must be able to tolerate larger imbalances while operating above one or more critical speeds. Rotor-bearing-SFD systems are regarded in theory as highly nonlinear, showing jump phenomena and even chaotic behavior for sufficiently large levels of rotor imbalance. Yet, few experimental results of practical value have verified the analytical predictions. A test rig for measurement of the dynamic forced response of a three-disk rotor (45 kg) supported on two cylindrical SFDs is described. The major objective is to provide a reliable data base to validate and enhance SFD design practice and to allow a direct comparison with analytical models. The open-ends SFD are supported by four-bar centering structures, each with a stiffness of 3.5 MN/m. Measured synchronous responses to 9000 rpm due to various imbalances show the rotor-SFD system to be well damped with amplification factors between 1.6 and 2.1 while traversing cylindrical and conical modes critical speeds. The rotor amplitudes of motion are found to be proportional to the imbalances for the first mode of vibration, and the damping coefficients extracted compare reasonably well to predictions based on the full-film, open-ends SFD. Tight lip (elastomeric) seals contribute greatly to the overall damping of the test rig. Measured dynamic pressures at the squeeze film lands are well above ambient values with no indication of lubricant dynamic cavitation as simple theoretical models dictate. The measurements show absence of nonlinear behavior of the rotor-SFD apparatus for the range of imbalances tested.


Author(s):  
Luis San Andrés

Aircraft engine rotors are particularly sensitive to rotor imbalance and sudden maneuver loads, since they are always supported on rolling element bearings with little damping. Most engines incorporate squeeze film dampers (SFDs) as means to dissipate mechanical energy from rotor vibrations and to ensure system stability. The paper quantifies experimentally the forced performance of a SFD comprising two parallel film lands separated by a deep central groove. Tests are conducted on two open ends SFDs, both with diameter D = 127 mm and nominal radial clearance c = 0.127 mm. One damper has film lands with length L = 12.7 mm (short length), while the other has 25.4 mm land lengths. The central groove has width L and depth 3/4 L. A light viscosity lubricant flows into the central groove via three orifices, 120 deg apart and then through the film lands to finally exit to ambient. In operation, a static loader pulls the bearing to various eccentric positions and electromagnetic shakers excite the test system with periodic loads to generate whirl orbits of specific amplitudes. A frequency domain method identifies the SFD damping and inertia force coefficients. The long damper generates six times more damping and about three times more added mass than the short length damper. The damping coefficients are sensitive to the static eccentricity (up to ∼ 0.5 c), while showing lesser dependency on the amplitude of whirl motion (up to 0.2 c). On the other hand, inertia coefficients increase mildly with static eccentricity and decrease as the amplitude of whirl motion increases. Cross-coupled force coefficients are insignificant for all imposed operating conditions on either damper. Large dynamic pressures recorded in the central groove demonstrate the groove does not isolate the adjacent squeeze film lands, but contributes to the amplification of the film lands’ reaction forces. Predictions from a novel SFD model that includes flow interactions in the central groove and feed orifices agree well with the test force coefficients for both dampers. The test data and predictions advance current knowledge and demonstrate that SFD-forced performance is tied to the lubricant feed arrangement.


2003 ◽  
Vol 125 (4) ◽  
pp. 423-426 ◽  
Author(s):  
Zenglin Guo ◽  
R. Gordon Kirk

A rotor-hydrodynamic bearing system having external flexible damped bearing supports is more complicated than that discussed in Part 1 but it can provide a means to improve the stability of the rotor system. A model for both vertical and horizontal analysis is developed first. Then, the analytical study on the vertical rotor is conducted. The results show that there can be up to four threshold speeds in this configuration that form a consecutive regional pattern, taking turns by stable or unstable regions. Furthermore, the numerical calculation by MATLAB is carried out to obtain the results for the horizontal system. The stability maps for various parametric configurations are presented. It has been shown that the value of support damping has a strong effect on the first several lower threshold speeds. But it has little effect on the last top threshold speed which is mainly determined by the portion of journal mass. Within a certain range of external damping value, the first several regions of instability can be reduced or eradicated. As far as the entire stability map is concerned, there is an optimum range of support damping that can make the rotor have only one top threshold speed over the entire running speed range. When the support stiffness is increased, the system stability map becomes narrow which means a small support stiffness is good for broadening the range of optimum external damping.


2019 ◽  
Vol 20 (9) ◽  
pp. 542-549 ◽  
Author(s):  
S. G. Bulanov

The approach to the analysis of Lyapunov systems stability of linear ordinary differential equations based on multiplicative transformations of difference schemes of numerical integration is presented. As a result of transformations, the stability criteria in the form of necessary and sufficient conditions are formed. The criteria are invariant with respect to the right side of the system and do not require its transformation with respect to the difference scheme, the length of the gap and the step of the solution. A distinctive feature of the criteria is that they do not use the methods of the qualitative theory of differential equations. In particular, for the case of systems with a constant matrix of the coefficients it is not necessary to construct a characteristic polynomial and estimate the values of the characteristic numbers. When analyzing the system stability with variable matrix coefficients, it is not necessary to calculate the characteristic indicators. The varieties of criteria in an additive form are obtained, the stability analysis based on them being equivalent to the stability assessment based on the criteria in a multiplicative form. Under the conditions of a linear system stability (asymptotic stability) of differential equations, the criteria of the systems stability (asymptotic stability) of linear differential equations with a nonlinear additive are obtained. For the systems of nonlinear ordinary differential equations the scheme of stability analysis based on linearization is presented, which is directly related to the solution under study. The scheme is constructed under the assumption that the solution stability of the system of a general form is equivalent to the stability of the linearized system in a sufficiently small neighborhood of the perturbation of the initial data. The matrix form of the criteria allows implementing them in the form of a cyclic program. The computer analysis is performed in real time and allows coming to an unambiguous conclusion about the nature of the system stability under study. On the basis of a numerical experiment, the acceptable range of the step variation of the difference method and the interval length of the difference solution within the boundaries of the reliability of the stability analysis is established. The approach based on the computer analysis of the systems stability of linear differential equations is rendered. Computer testing has shown the feasibility of using this approach in practice.


Sign in / Sign up

Export Citation Format

Share Document