Integrating Producibility and Product Performance Tools Within a Web-Service Environment

Author(s):  
Kurt A. Beiter ◽  
Kosuke Ishii

This paper describes the integration of a producibility and product performance tool in a web service environment. First, we provide a background on web services and a review of product development environments that utilize a service-based architecture. Next, the paper describes the implementation of two services—a process capability database coupled with an aircraft engine fuel nozzle performance model. Discussions close addressing the challenges faced in the current software services development environment.

1993 ◽  
Vol 115 (3) ◽  
pp. 439-446 ◽  
Author(s):  
R. W. Stickles ◽  
W. J. Dodds ◽  
T. R. Koblish ◽  
J. Sager ◽  
S. Clouser

The objective of the Innovative High-Temperature Aircraft Engine Fuel Nozzle Program was to design and evaluate a nozzle capable of operating at a combustor inlet air temperature of 1600°F (1144 K) and a fuel temperature of 350°F (450 K). The nozzle was designed to meet the same performance requirements and fit within the size envelope of a current production F404 dual orifice fuel nozzle. The design approach was to use improved thermal protection and fuel passage geometry in combination with fuel passage surface treatment to minimize coking at these extreme fuel and air temperatures. Heat transfer models of several fuel injector concepts were used to optimize the thermal protection, while a series of sample tube coking tests were run to evaluate the effect of surface finish, coatings, and tube material on the coking rate. Based on heat transfer analysis, additional air gaps, reduced fuel passage flow area, and ceramic tip components reduced local fuel wetted wall temperatures by more than 200°F (110 K) when compared to a current production F404 fuel nozzle. Sample tube coking test results showed the importance of surface finish on the fuel coking rate. Therefore, a 1 μin. (0.025 μm) roughness was specified for all fuel passage surfaces. A novel flow divider valve in the tip was also employed to reduce weight, allow room for additional thermal protection, and provide back pressure to reduce the risk of fuel vaporization. Phase II of this program will evaluate the fuel nozzle with a series of contaminated fuel and coking tests.


Author(s):  
R. W. Stickles ◽  
W. J. Dodds ◽  
T. R. Koblish ◽  
J. Sager ◽  
S. Clouser

The objective of the Innovative High Temperature Aircraft Engine Fuel Nozzle Program was to design and evaluate a nozzle capable of operating at a combustor inlet air temperature of 1600°F (1144°K) and a fuel temperature of 350°F (450°K). The nozzle was designed to meet the same performance requirements and fit within the size envelope of a current production F404 dual orifice fuel nozzle. The design approach was to use improved thermal protection and fuel passage geometry in combination with fuel passage surface treatment to minimize coking at these extreme fuel and air temperatures. Heat transfer models of several fuel injector concepts were used to optimize the thermal protection, while a series of sample tube coking tests were run to evaluate the effect of surface finish, coatings and tube material on the coking rate. Based on heat transfer analysis, additional air gaps, reduced fuel passage flow area and ceramic tip components reduced local fuel wetted wall temperatures by more than 200°F (110°K) when compared to a current production F404 fuel nozzle. Sample tube coking test results showed the importance of surface finish on the fuel coking rate. Therefore, a 1 micro-inch (.025 micron) roughness was specified for all fuel passage surfaces. A novel flow divider valve in the tip was also employed to reduce weight, allow room for additional thermal protection, and provide back pressure to reduce the risk of fuel vaporization. Phase II of this program will evaluate the fuel nozzle with a series of contaminated fuel and coking tests.


2021 ◽  
pp. 1-21
Author(s):  
G.E. Pateropoulos ◽  
T.G. Efstathiadis ◽  
A.I. Kalfas

ABSTRACT The potential to recover waste heat from the exhaust gases of a turboprop engine and produce useful work through an Organic Rankine Cycle (ORC) is investigated. A thermodynamic analysis of the engine’s Brayton cycle is derived to determine the heat source available for exploitation. The aim is to use the aircraft engine fuel as the working fluid of the organic Rankine cycle in order to reduce the extra weight of the waste heat recovery system and keep the thrust-to-weight ratio as high as possible. A surrogate fuel with thermophysical properties similar to aviation gas turbine fuel is used for the ORC simulation. The evaporator design as well as the weight minimisation and safety of the suggested application are the most crucial aspects determining the feasibility of the proposed concept. The results show that there is potential in the exhaust gases to produce up to 50kW of power, corresponding to a 10.1% improvement of the overall thermal efficiency of the engine.


2021 ◽  
Vol 1 ◽  
pp. 1897-1906
Author(s):  
Clemens Birk ◽  
Marc Zuefle ◽  
Albert Albers ◽  
Nikola Bursac ◽  
Dieter Krause

AbstractThis paper considers the orientation of product development structures towards interdisciplinary system architectures using the example of a tool machine manufacturer. Due to the change from simple mechanical products to extensively designed systems, whose successful development requires the integration of all disciplines involved, it is analyzed which requirements there are for these interdisciplinary system architectures in today's development environment. In addition, it is validated on the basis of the investigation environment that interdisciplinary system structures are necessary for the development on the different levels of the system view. In doing so, the investigation environment addresses the concept of extracting customer-relevant features (systems) from a physical-tailored modular system (supersystem) in order to develop and test them autonomously, as well as to transfer them to the entire product range in a standardized manner. The elaboration identifies basic requirements for the development of a knowledge base in interdisciplinary system structures and places them into the context of an agile modular kit development.


Author(s):  
Takeshi Yamamoto ◽  
Kazuo Shimodaira ◽  
Seiji Yoshida ◽  
Yoji Kurosawa

The Japan Aerospace Exploration Agency (JAXA) is conducting research and development on aircraft engine technologies to reduce environmental impact for the TechCLEAN project. As a part of the project, combustion technologies have been developed with an aggressive target that is an 80% reduction over the NOx threshold of the ICAO CAEP/4 standard. A staged fuel nozzle with a pilot mixer and a main mixer was developed and tested using a single-sector combustor under the target engine’s LTO cycle conditions with a rated output of 40 kN and an overall pressure ratio of 25.8. The test results showed a 77% reduction over the CAEP/4 NOx standard. A reduction in smoke was found under a higher thrust condition than the 30% MTO condition, and a reduction in CO emission was found under a lower thrust condition than the 85% MTO condition. In the present study, an additional fuel burner was designed and tested with the staged fuel nozzle in a single-sector combustor to control emissions. The test results show that the combustor enables an 82% reduction in NOx emissions relative to the ICAO CAEP/4 standard and a drastic reduction in smoke and CO emissions.


Author(s):  
Takeshi Yamamoto ◽  
Kazuo Shimodaira ◽  
Seiji Yoshida ◽  
Yoji Kurosawa

The Japan Aerospace Exploration Agency (JAXA) is conducting research and development on aircraft engine technologies to reduce environmental impact for the Technology Development Project for Clean Engines (TechCLEAN). As a part of the project, combustion technologies have been developed with an aggressive target that is an 80% reduction over the NOx threshold of the International Civil Aviation Organization (ICAO) Committee on Aviation Environmental Protection (CAEP)/4 standard. A staged fuel nozzle with a pilot mixer and a main mixer was developed and tested using a single-sector combustor under the target engine's landing and takeoff (LTO) cycle conditions with a rated output of 40 kN and an overall pressure ratio of 25.8. The test results showed a 77% reduction over the CAEP/4 NOx standard. However, the reduction in smoke at thrust conditions higher than the 30% MTO condition and of CO emission at thrust conditions lower than the 85% MTO condition are necessary. In the present study, an additional fuel burner was designed and tested with the staged fuel nozzle in a single-sector combustor to control emissions. The test results show that the combustor enables an 82% reduction in NOx emissions relative to the ICAO CAEP/4 standard and a drastic reduction in smoke and CO emissions.


2014 ◽  
Vol 68 (3) ◽  
Author(s):  
Tan Owee Kowang ◽  
Amran Rasli ◽  
Choi Sang Long

New Product Development (NPD) is vital in assisting Research and Development (R&D) based organizations to adapt to the changes in markets and technology for competitive advantage. Ensuring the success of new products and optimization of new product performance is critical and essential for Research and Development based organizations.  Hence, this study is carried out to explore does organizational background in term of company’s ownership (i.e. local or multinational companies) and operational scales (i.e. number of Research and Development staffs) affect NPD performance of Research and Development companies in Malaysia. In line with this, 8 New Product Development performance attributes were identified from literature review. These attributes were subsequently formulated into a survey questionnaire and responded by 186 respondents. Thereafter, the effect of organizational ownership and operational scale toward NPD performance are examined separately via Independent Sample t-test and Analysis of Variance (ANOVA). Finding from the study revealed that the level of NPD performance in multinational R&D companies is higher than local R&D companies. Findings from this research also implied that NPD performance can be further improved by increasing number of R&D staffs.  


Sign in / Sign up

Export Citation Format

Share Document