A Robust Tool for Tuning and Evaluation of Automobile Motion Controllers

Author(s):  
Miguel A. Naya ◽  
Javier Cuadrado

During the last years, our group has worked on real-time formulations for the dynamics of multi-body systems. Now, in order to find out whether such methods are suitable to address real industrial problems, we intend to develop control algorithms for a car on its computer model (virtual prototyping), and evaluate the performance of such controllers when implemented on the corresponding physical prototype. This paper addresses the first part of the work. Two maneuvers are to be considered: straight line and obstacle avoidance. The computer model of the car has been coded in Fortran language. Fuzzy logic has been chosen to design the control algorithms, which have been implemented on the Matlab environment. Several alternatives to connect Fortran and Matlab-based functions have been studied, concluding that the most appropriate election depends on the purpose being pursued: controller tuning or onboard use of an already tuned controller. Simulator capabilities have been given to the program by means of a realistic graphical output and game-type driving peripherals (steering wheel and pedals), so that comparison may be established between human and designed automatic control.

Author(s):  
Mariapaola D’Imperio ◽  
Carlo Canali ◽  
Darwin Caldwell ◽  
Ferdinando Cannella ◽  
Cristiano Pizzamiglio ◽  
...  

Manufacturers answered to the global competition rise by increasing the efficiency of their development process by substituing the hardware tests with their virtual counterpart. Following the same idea, in this paper, the introduction of the virtual prototyping technique in the design of a complex robotic leg is proposed. The novelty of this work is double: the first motivation lies on the characteristic of the mechanism, since it is a FLEXible jumping LEG; the second one, instead, regards to the introduction of methods well known in other research field but rarely used in robotics. This paper describes the whole design process, while the assembly of the physical prototype, the control development and the experimental tests will be matters of future works.


Author(s):  
Ping Wang ◽  
Jun Lai ◽  
Tao Liao ◽  
Jingmang Xu ◽  
Jian Wang ◽  
...  

Train derailments in railway switches are becoming more and more common, which have caused serious casualties and economic losses. Most previous studies ignored the derailment mechanism when vehicles pass through the turnout. With this consideration, this work aims to research the 3D derailment coefficient limit and passing performance in turnouts through the quasi-static analysis and multi-body dynamic simulation. The proposed derailment criteria have considered the influence of creep force and wheelset yaw angle. Results show that there are two derailing stages in switch panel, which are climbing the switch rail and stock rail, respectively. The 3D derailment coefficient limit at the region of top width 5 mm to 20 mm is much lower than the main track rail, which shows that wheels are more likely to derail in this area. The curve radius before the switch rail is suggested to be set as 350 m. When the curve radius before turnout is 65 m, the length of the straight line between the curve and turnout needs to be larger than 3 m. This work can provide a good understanding of the derailment limit and give guidance to set safety criteria when vehicles pass through the turnout.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 892
Author(s):  
Poornima Udaychandra Panati ◽  
Sridhar Ramasamy ◽  
Mominul Ahsan ◽  
Julfikar Haider ◽  
Eduardo M.G. Rodrigues

The existing solutions for reducing total harmonic distortion (THD) using different control algorithms in shunt active power filters (SAPFs) are complex. This work proposes a split source inverter (SSI)-based SAPF for improving the power quality in a nonlinear load system. The advantage of the SSI topology is that it is of a single stage boost inverter with an inductor and capacitor where the conventional two stages with an intermediate DC-DC conversion stage is discarded. This research proposes inventive control schemes for SAPF having two control loops; the outer control loop regulates the DC link voltage whereas the inner current loop shapes the source current profile. The control mechanism implemented here is an effective, less complex, indirect scheme compared to the existing time domain control algorithms. Here, an intelligent fuzzy logic control regulates the DC link voltage which facilitates reference current generation for the current control scheme. The simulation of the said system was carried out in a MATLAB/Simulink environment. The simulations were carried out for different load conditions (RL and RC) using a fuzzy logic controller (FLC) and PI controllers in the outer loop (voltage control) and hysteresis current controller (HCC) and sinusoidal pulse width modulation (SPWM) in the inner loop (current control). The simulation results were extracted for dynamic load conditions and the results demonstrated that the THD can be reduced to 0.76% using a combination of SPWM and FLC. Therefore, the proposed system proved to be effective and viable for reducing THD. This system would be highly applicable for renewable energy power generation such as Photovoltaic (PV) and Fuel cell (FC).


2015 ◽  
Vol 35 (8) ◽  
pp. 1000-1019 ◽  
Author(s):  
Andrew D. Marchese ◽  
Russ Tedrake ◽  
Daniela Rus

The goal of this work is to develop a soft-robotic manipulation system that is capable of autonomous, dynamic, and safe interactions with humans and its environment. First, we develop a dynamic model for a multi-body fluidic elastomer manipulator that is composed entirely from soft rubber and subject to the self-loading effects of gravity. Then, we present a strategy for independently identifying all of the unknown components of the system; these are the soft manipulator, its distributed fluidic elastomer actuators, as well as the drive cylinders that supply fluid energy. Next, using this model and trajectory-optimization techniques we find locally-optimal open-loop policies that allow the system to perform dynamic maneuvers we call grabs. In 37 experimental trials with a physical prototype, we successfully perform a grab 92% of the time. Last, we introduce the idea of static bracing for a soft elastomer arm and discuss how forming environmental braces might be an effective manipulation strategy for this class of robots. By studying such an extreme example of a soft robot, we can begin to solve hard problems inhibiting the mainstream use of soft machines.


2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Andini Putri ◽  
Febri Maspiyanti

Mail delivery at the Faculty of Engineering Pancasila University (FTUP) has many complaints regarding the delay of mail delivery from the administrative officer to the recipient of the mail. Lack of administrative staff responsible for the delay of mail acceptance can certainly cause great disadventages to the recipient; hence this can be a big factor inhibiting the dissemination of information. As technology develops, many research on robot able to accommodate human’s work. One type of robot that has been developed is the Robot Line Follower. In order to reduce the mail delivery delay, in this research we built a Line Follower Robot using Fuzzy Logic method. Fuzzy logic applied to this robot as a determinant of Servo motor speed and distance determinant of mail delivery area. This research yields 100% accuracy for straight line, 79% accuracy for U-line, 53% accuracy for 90o turn, 94,75% accuracy for obstacle detection, 87,75% accuracy for alarm, and 92,75% accuracy for RFID card detection, and 82% accuracy for RFID Card with option menu. Keywords: Accuracy, Fuzzy logic, Line Follower, RFID, Robot


2019 ◽  
Vol 5 (1) ◽  
pp. 549-552
Author(s):  
Veronika Huttova ◽  
Jakub Rafl ◽  
Knut Möller ◽  
Thomas E. Bachman ◽  
Petr Kudrna ◽  
...  

AbstractThe advantages of automatic control of the fraction of inspired oxygen in neonates have been documented in recently published clinical trials. Many control algorithms are available, but their comparison is missing in the literature. A mathematical model of neonatal oxygen transport could be a useful tool to compare and enhance both automatic control algorithms and manual control of fraction of inspired oxygen. Besides other components, the model of neonatal oxygen transport must include a module linking arterial (SaO2) and peripheral (SpO2) oxygen saturation. The pulse oximeter module must reflect issues of SpO2 measurement typical for clinical practice, such as overestimation of SpO2 over SaO2 documented by several studies, or inaccurate pulse oximeter readings due to high noise. The aim of this study was to describe both the bias between SaO2 and SpO2 and the noise, characteristic for continuous SpO2 recording, for a computer model of oxygenation of a premature infant. The SpO2-SaO2 bias, derived from available clinical data, describes a typical deviation of the SpO2 measurement as a function of the true SaO2 value in three different SaO2 intervals. The SpO2 measurement noise was considered as a random process that affects biased SpO2values at each time point with statistical properties estimated from SpO2 continuous recordings of 5 stable newborns. The results of the study will help to adjust a computer model of neonatal oxygenation to the real situations observed in the clinical practice.


2013 ◽  
Vol 37 (2) ◽  
pp. 185-196 ◽  
Author(s):  
Yu Wang ◽  
Baolin Liu ◽  
Qin Zhou ◽  
Yuanbiao Hu ◽  
Guomin Li

Sonic drilling is a novel sampling technology applied in many fields. Based on SolidWorks software, a dynamics virtual prototyping is utilized to develop a physical sonic driller by demonstrating collision detection and optimizing overall layout and key component structures. Key hydraulic and structural parameters are optimized using a mathematical model. Search for the optimized parameters and operating conditions for this multi-body mechanical system is conducted experimentally. The practical results show that the virtual prototype technology not only shortens the design cycle but also improves the quality of the conventional design. The new sonic driller designed by this method is both environmentally friendly and smarter.


Author(s):  
Ezral Baharudin ◽  
Jarkko Nokka ◽  
Henri Montonen ◽  
Paula Immonen ◽  
Asko Rouvinen ◽  
...  

The interest in using hybrid technology in Non-Road Mobile Machinery (NRMM) has increased significantly in the late 2000s due to tightening emission regulations (Tier 4). In general, utilization of hybrid technology can simplify the vehicle driveline compared to conventional mechanical and hydraulic power transmissions. On the other hand, hybrid technology and its different driving modes and multiple power sources creates new challenges in the design process. Many industries have used co-simulation and virtual prototyping approaches successfully as a development and diagnostic tool. However, it is still rarely used in the design of hybrid mobile machines. This is due to the fact, that the computer analysis of a mobile machine is a multidisciplinary task which requires a deep knowledge in several engineering areas. In this paper, a novel real-time co-simulation platform is presented that couples multi-body dynamics based physics modelling and Matlab/Simulink–based hybrid driveline modelling. The presented approach enables a fast and accurate virtual prototyping tool to calculate dimension hybrid driveline components and test various hybridization concepts.


Robotica ◽  
2005 ◽  
Vol 23 (6) ◽  
pp. 771-780 ◽  
Author(s):  
A. Meghdari ◽  
R. Karimi ◽  
H. N. Pishkenari ◽  
A. L. Gaskarimahalle ◽  
S. H. Mahboobi

In this paper a novel approach to dynamic formulation of rovers has been presented. The complexity of these multi-body systems especially on rough terrain, challenged us to use the Kane's method which has been preferred to others in these cases. As an example, symbolic equations of a six-wheeled rover, named CEDRA Rescue Robot which uses a shrimp like mechanism, have been derived and a simulation of forward and inverse dynamics has been presented. Due to the clear form of equations, each term defines a physical meaning which represents the effect of each parameter, resulting in a frame-work for performance comparison of rovers. Although the method has been described for a 2-D non-slipping case, it is also very useful for dimensional and dynamical optimization, high speed motion analysis, and checking various control algorithms. Furthermore, it can be extended to 3-D cases and other complicated mechanisms and rovers while conserving its inherent benefits and adding to the ease of handling nonholonomic constraints.


Sign in / Sign up

Export Citation Format

Share Document