A Kind of Kinematically Redundant Planar Parallel Manipulator for Optimal Output Accuracy

Author(s):  
Genliang Chen ◽  
Hao Wang ◽  
Yong Zhao ◽  
Zhongqin Lin

Theoretically, parallel manipulators perform higher precision than their serial counterparts. However, the output accuracy is sensitive to their configurations and dimensions. This paper presents a kind of parallel manipulator with kinematically redundant structure, which can improve the output accuracy by optimizing the error transmission from the active joints to the end-effector. With the kinematic redundancy, free redundant variables can be defined as second task variables, which provide the possibility to select a proper configuration for least error transmission at any pose (the position and orientation) of the end-effector for a given task. Contrast to non-redundant manipulators, the output errors of the proposed manipulator, caused by the active joints input errors, can be optimized rather than determined. By this goal, new limbs with redundant parallel structures are introduced to non-redundant planar parallel manipulators. Numerical example shows that the new architecture has the potential to enhance the output accuracy for a given pose or prescribed trajectory of the end-effector.

1970 ◽  
Vol 41 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Soheil Zarkandi

Finding Singular configurations (singularities) is one of the mandatory steps during the design and control of mechanisms. Because, in these configurations, the instantaneous kinematics is locally undetermined that causes serious problems both to static behavior and to motion control of the mechanism. This paper addresses the problem of determining singularities of a 3-PRRR kinematically redundant planar parallel manipulator by use of an analytic technique. The technique leads to an input –output relationship that can be used to find all types of singularities occurring in this type of manipulators.Key Words: Planar parallel manipulators; Redundant manipulators; Singularity analysis; Jacobian matrices.DOI: 10.3329/jme.v41i1.5356Journal of Mechanical Engineering, Vol. ME 41, No. 1, June 2010 1-6


Author(s):  
H. Singh ◽  
J. S. Dai ◽  
D. R. Kerr

Abstract A method has been developed that successfully represents the workspace of a parallel manipulator within a finite twist image space. A point in this space represents a unique position and orientation of the end effector. The method of analysis is based upon the established technique of simplifying the parallel manipulator, by modelling each leg as an independent serial manipulator. The workspace corresponding to each serial manipulator is mapped onto the image space to produce a hyper-volume. The intersection of the individual hyper-volumes represents the workspace of the complete parallel manipulator. Since the hyper-volume corresponds to all possible positions attainable by the end effector, this represents the reachable workspace. Within the reachable workspace there lies subsets of volumes in ⮲3 that correspond to all possible orientations attainable. Such volumes represent the dextrous workspace. Although the method is illustrated by the use of a Stewart platform, it is equally applicable to the general parallel manipulator. The method is demonstrated successfully by the use of a 3 legged, 3-DOF planar parallel manipulator.


Author(s):  
Ethan Stump ◽  
Vijay Kumar

While there is extensive literature available on parallel manipulators in general, there has been much less attention given to cable-driven parallel manipulators. In this paper, we address the problem of analyzing the reachable workspace using the tools of semi-definite programming. We build on earlier work [1, 2] done using similar techniques by deriving limiting conditions that allow us to compute analytic expressions for the boundary of the reachable workspace. We illustrate this computation for a planar parallel manipulator with four actuators.


Author(s):  
S Kemal Ider

In planar parallel robots, limitations occur in the functional workspace because of interference of the legs with each other and because of drive singularities where the actuators lose control of the moving platform and the actuator forces grow without bounds. A 2-RPR (revolute, prismatic, revolute joints) planar parallel manipulator with two legs that minimizes the interference of the mechanical components is considered. Avoidance of the drive singularities is in general not desirable since it reduces the functional workspace. An inverse dynamics algorithm with singularity robustness is formulated allowing full utilization of the workspace. It is shown that if the trajectory is planned to satisfy certain conditions related to the consistency of the dynamic equations, the manipulator can pass through the drive singularities while the actuator forces remain stable. Furthermore, for finding the actuator forces in the vicinity of the singular positions a full rank modification of the dynamic equations is developed. A deployment motion is analysed to illustrate the proposed approach.


Author(s):  
Richard Stamper ◽  
Lung-Wen Tsai

Abstract The dynamics of a parallel manipulator with three translational degrees of freedom are considered. Two models are developed to characterize the dynamics of the manipulator. The first is a traditional Lagrangian based model, and is presented to provide a basis of comparison for the second approach. The second model is based on a simplified Newton-Euler formulation. This method takes advantage of the kinematic structure of this type of parallel manipulator that allows the actuators to be mounted directly on the base. Accordingly, the dynamics of the manipulator is dominated by the mass of the moving platform, end-effector, and payload rather than the mass of the actuators. This paper suggests a new method to approach the dynamics of parallel manipulators that takes advantage of this characteristic. Using this method the forces that define the motion of moving platform are mapped to the actuators using the Jacobian matrix, allowing a simplified Newton-Euler approach to be applied. This second method offers the advantage of characterizing the dynamics of the manipulator nearly as well as the Lagrangian approach while being less computationally intensive. A numerical example is presented to illustrate the close agreement between the two models.


2005 ◽  
Vol 127 (4) ◽  
pp. 550-563 ◽  
Author(s):  
C. K. Kevin Jui ◽  
Qiao Sun

Parallel manipulators are uncontrollable at force singularities due to the infeasibly high actuator forces required. Existing remedies include the application of actuation redundancy and motion planning for singularity avoidance. While actuation redundancy increases cost and design complexity, singularity avoidance reduces the effective workspace of a parallel manipulator. This article presents a path tracking type of approach to operate parallel manipulators when passing through force singularities. We study motion feasibility in the neighborhood of singularity and conclude that a parallel manipulator may track a path through singular poses if its velocity and acceleration are properly constrained. Techniques for path verification and tracking are presented, and an inverse dynamics algorithm that takes actuator bounds into account is examined. Simulation results for a planar parallel manipulator are given to demonstrate the details of this approach.


Author(s):  
U Sezgin ◽  
L D Seneviratne ◽  
S W E Earles

Two obstacle avoidance criteria are developed, utilizing the kinematic redundancy of serial redundant manipulators having revolute joints and tracking pre-determined end effector paths. The first criterion is based on the instantaneous distances between certain selected points along the manipulator, called configuration control points (CCP), and the vertices of the obstacles. The optimized joint configurations are obtained by maximizing these distances. Thus, the links of the manipulator are configured away from the obstacles. The second criterion uses a different approach, and is based on Voronoi boundaries representing the equidistant paths between two obstacles. The optimized joint configurations are obtained by minimizing the distances between the CCP and control points selected on the Voronoi boundaries. The validities of the criteria are demonstrated through computer simulations.


2003 ◽  
Vol 125 (1) ◽  
pp. 92-97 ◽  
Author(s):  
Han Sung Kim ◽  
Lung-Wen Tsai

This paper presents the design of spatial 3-RPS parallel manipulators from dimensional synthesis point of view. Since a spatial 3-RPS manipulator has only 3 degrees of freedom, its end effector cannot be positioned arbitrarily in space. It is shown that at most six positions and orientations of the moving platform can be prescribed at will and, given six prescribed positions, there are at most ten RPS chains that can be used to construct up to 120 manipulators. Further, solution methods for fewer than six prescribed positions are also described.


Robotica ◽  
2002 ◽  
Vol 20 (4) ◽  
pp. 353-358 ◽  
Author(s):  
Raffaele Di Gregorio

In the literature, 3-RRPRR architectures were proposed to obtain pure translation manipulators. Moreover, the geometric conditions, which 3-RRPRR architectures must match, in order to make the end-effector (platform) perform infinitesimal (elementary) spherical motion were enunciated. The ability to perform elementary spherical motion is a necessary but not sufficient condition to conclude that the platform is bound to accomplish finite spherical motion, i.e. that the mechanism is a spherical parallel manipulator (parallel wrist). This paper demonstrates that the 3-RRPRR architectures matching the geometric conditions for elementary spherical motion make the platform accomplish finite spherical motion, i.e. they are parallel wrists (3-RRPRR wrist), provided that some singular configurations, named translation singularities, are not reached. Moreover, it shows that 3-RRPRR wrists belong to a family of parallel wrists which share the same analytic expression of the constraints which the legs impose on the platform. Finally, the condition that identifies all the translation singularities of the mechanisms of this family is found and geometrically interpreted. The result of this analysis is that the translation singularity locus can be represented by a surface (singularity surface) in the configuration space of the mechanism. Singularity surfaces drawn by exploiting the given condition are useful tools in designing these wrists.


Author(s):  
Jaime Gallardo-Alvarado ◽  
Ramon Rodriguez-Castro ◽  
Luciano Perez-Gonzalez ◽  
Carlos R. Aguilar-Najera ◽  
Alvaro Sanchez-Rodriguez

Parallel manipulators with multiple end-effectors bring us interesting advantages over conventional parallel manipulators such as improved manipulability, workspace and avoidance of singularities. In this work the kinematics of a five-bar planar parallel manipulator equipped with two end-effectors is approached by means of the theory of screws. As an intermediate step the displacement analysis of the robot is also investigated. The input-output equations of velocity and acceleration are systematically obtained by resorting to reciprocal-screw theory. In that regard the Klein form of the Lie algebra se(3) of the Euclidean group SE(3) plays a central role. In order to exemplify the method of kinematic analysis, a case study is included. Furthermore, the numerical results obtained by means of the theory of screws are confirmed with the aid of special software like ADAMS.TM


Sign in / Sign up

Export Citation Format

Share Document