An Empirical Approach to Modeling the Friction Coefficient for Wheel-Rail Contact

Author(s):  
HyunWook Lee ◽  
Corina Sandu ◽  
Carvel Holton ◽  
Mehdi Ahmadian

The coefficient of friction (CoF) is one of the most important parameters for the contact between the wheel and the rail. Accurate estimation or measurement of the CoF has a very important role, both in terms of modeling the train dynamics and in terms of reducing operational costs in the long-term. For ease of implementation, since the nature of the wheel-rail contact dynamics is very complex, the assumption of a constant CoF is still used in most theoretical studies. Nevertheless, experimental work indicates that the CoF depends on dynamic changes in various wheel-rail conditions, like sliding velocity, contact patch shape and size for stick and sliding region, wheel and rail geometry, wheel vibration, rail surface roughness and/or lubrication, etc. In this paper we present the proposed equation to model the nonlinear dry friction coefficient at the wheel-rail contact. The friction coefficient is calculated at the three different values for change in the damping ratio while maintaining all the other conditions the same. As expected, the analysis performed to estimate the dry friction coefficient based on the proposed equation and using NUCARS® simulation results shows that the coefficient of friction has a highly nonlinear dependence on its parameters.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ting Wang ◽  
Hanfei Guo ◽  
Jianjun Qiao ◽  
Xiaoxue Liu ◽  
Zhixin Fan

PurposeTo address the lack of data in this field and determine the relationship between the coefficient of friction and the interference between locomotive wheels and axles, this study evaluates the theoretical relationship between the coefficient of friction and the interference under elastic deformation.Design/methodology/approachWhen using numerical analyses to study the mechanical state of the contacting components of the wheels and axle, the interference between the axle parts and the coefficient of friction between the axle parts are two important influencing factors. Currently, as the range of the coefficient of friction between the wheel and axle in interference remains unknown, it is generally considered that the coefficient of friction is only related to the materials of the friction pair; the relationship between the interference and the coefficient of friction is often neglected.FindingsA total of 520 press-fitting experiments were conducted for 130 sets of wheels and axles of the HXD2 locomotive with 4 types of interferences, in order to obtain the relationship between the coefficient of friction between the locomotive wheel and axle and the amount of interference. These results are expected to serve as a reference for selecting the coefficient of friction when designing axle structures with the rolling stock, research on the press-fitting process and evaluations of the fatigue life.Originality/valueThe study provides a basis for the selection of friction coefficient and interference amount in the design of locomotive wheels and axles.


2019 ◽  
pp. 34-37
Author(s):  
Viktor Mikhailovich Yurov ◽  
Sergei Alekseevich Guchenko

In this paper, the authors propose a new approach to the consideration of the friction phenomenon in HEAs and, in particular, dry friction. An equation is obtained that shows the nonlinear dependence of the friction coefficient on Gibbs energy G0, on temperature T, on the concentration of the number of electrons N and which allows predicting the formation of high entropy alloys and coatings.


Author(s):  
Marc Brandl ◽  
Friedrich Pfeiffer

Abstract This paper deals with the measurement of dry friction. A tribometer was developed in order to identify both the sticking and the sliding coefficient of friction. The aim was to determine the so called Stribeck-curve of any material in contact. The design of the plant is presented. Avoiding errors in recalculating the coefficient of friction, a detailed model of the plant as a multi body system with motor feedback was generated. Advantages of the tribometer are shown in simulations. Some results of measurements in comparison with simulation results are presented.


Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 448 ◽  
Author(s):  
Jichun Xing ◽  
Huajun Li ◽  
Dechun Liu

Tactile feedback technology has important development prospects in interactive technology. In order to enrich the tactile sense of haptic devices under simple control, a piezoelectric haptic feedback device is proposed. The piezoelectric tactile feedback device can realize tactile changes in different excitation voltage amplitudes, different excitation frequencies, and different directions through the ciliary body structure. The principle of the anisotropic vibration of the ciliary body structure was analyzed here, and a tactile model was established. The equivalent friction coefficient under full-coverage and local-coverage of the skin of the touch beam was deduced and solved. The effect of system parameters on the friction coefficient was analyzed. The results showed that in the full-coverage, the tactile effect is mainly affected by the proportion of the same directional ciliary bodies and the excitation frequency. The larger the proportion of the same direction ciliary body is, the smaller the coefficient of friction is. The larger the excitation frequency is, the greater the coefficient of friction is. In the local-coverage, the tactile effect is mainly affected by the touch position and voltage amplitude. When changing the touch pressure, it has a certain effect on the change of touch, but it is relatively weak. The experiment on the sliding friction of a cantilever touch beam and the experiment of human factor were conducted. The experimental results of the sliding friction experiment are basically consistent with the theoretical calculations. In the human factor experiment, the effects of haptic regulation are mainly affected by voltage or structure of the ciliary bodies.


1970 ◽  
Vol 92 (2) ◽  
pp. 264-272 ◽  
Author(s):  
T. Tsukizoe ◽  
T. Hisakado

A study was made of surface roughness effects on dry friction between two metals, assuming that the asperities are cones of the slopes which depend on the surface roughness. The theoretical explanations were offered for coefficients of friction of the hard cones and spheres ploughing along the soft metal surface. A comparison of calculated values based on these with experimental data shows good agreement. Moreover, theoretical discussion was carried out of surface roughness effects on dry friction between two metal surfaces on the basis of the analyses of the frictional mechanism for a hard slider on the metal surface. The theoretical estimation of the coefficient of friction between two metal surfaces can be carried out by using the relations between the surface roughness and the slopes of the asperities, and the coefficient of friction due to the adhesion at the interface. The experiments also showed that when two metal surfaces are first loaded normally and then subjected to gradually increasing tangential forces, real area of contact between them increases and the maximum tangential microslip of them increases with the increase of the surface roughness.


2014 ◽  
Vol 474 ◽  
pp. 303-308 ◽  
Author(s):  
Eva Labašová

The coefficient of friction for the bronze material (CuZn25Al6) with inset graphite beds is investigated in the present paper. Friction coefficient was investigated experimentally by the testing machine Tribotestor`89 which uses the principle of the ring on ring method. Tribotestor`89 machine may be classed to the rotary tribometers. The tested sliding pairs were of the same material. The internal bushing performed a rotational movement with constant sliding speed (v = 0.8 m s-1). The external fixed bushing was exposed to the normal load, which was of different sizes and different variations. Process of load was increased from level 50 N to 200 N (400 N, 600 N) during run up 600 s, after the run up the appropriate level of load was held.The forth test had a rectangular shape of loading with direct current component 400 N and the amplitude 200 N period 600 s, the whole test took 1800 s. The obtained results reveal that friction coefficient decreases with the increase of normal load. Further, that the coefficient of friction was found smaller at constant load, as compared to rectangular shape of loading.


2021 ◽  
Vol 2094 (4) ◽  
pp. 042038
Author(s):  
S N Vikharev ◽  
VA Morkovin

Abstract Object of research of article is the drawing of bars plate in the refiners at refining of chips and wood pulp. On the basis of the theory of contact interaction of bars influence of the drawing of plate on characteristics of contact processes is investigated. The friction coefficient between plate decreases at increase in density of contact of bars. At increase in an angle of crossing of bars rotor and stator and refining of pulp with concentration up to 6% the coefficient of friction decreases. At increase in an angle of crossing of bars chips and pulp with concentration over 10% the coefficient of friction increases. Therefore it is recommended to increase the angle of crossing of bars rotor and stator at refining of pulp of low concentration, and at refining of pulp of concentration over 10% and chips - to reduce, up to a radial arrangement.


Tribologia ◽  
2018 ◽  
Vol 279 (3) ◽  
pp. 77-82 ◽  
Author(s):  
Maciej KUJAWA

Plastic plain bearings are deformed during assembly. According to one of the leading manufacturers of plastic sliding elements, the bushing’s internal diameter may be reduced by up to 2.5%. Moreover, plastic sliding elements are increasingly used in harsh conditions (e.g., under high pressure). However, there are no papers that describe the influence of deformation under compression on the tribological properties of plastics. Specimens made of PTFE, PA6, and PE-HD were deformed while conducting the current research, and this deformation was maintained during cooperation with steel. The results of microhardness, wear, and the coefficient of friction tests were compared to data gathered during tests of non-deformed specimens. During deformation under compression (e ≈ 6%), microhardness lowered by up to 30% (PTFE). A significant reduction of hardness (by up to 15%) was observed when strain was only 2%, and up to this value of strain, there is mainly elastic deformation in the polymer. Changes of the coefficient of friction values were insignificant. In terms of PTFE and PE-HD, during deformation under compression up to e ≈ 6% , the block scar volumes were 20% and 40% larger, respectively, than the non-deformed form of specimens. In terms of PA6, the change in block scar volume was insignificant. It may seem that tension and compression ought to cause totally different effects. However, the comparison of the current results and the results described in the previous paper exposes that these two different processes led to the same effects – reducing hardness and increasing wear. Deformation of plastic sliding components as an effect of assembly appears to be minor; however, it affects polymer microhardness and wear resistance.


1999 ◽  
Vol 121 (2) ◽  
pp. 282-285 ◽  
Author(s):  
D. P. Hess

The influence of harmonic normal loads on sliding friction is investigated through analysis of contacts consisting of conical and spherical sliders of hard materials on softer metal surfaces. Friction for such contacts is assumed to result from a plowing component and a shearing component. Calculations and experiments show that the coefficient of friction is essentially independent of normal load for contacts with conical sliders. However, for spherical sliders the relation between the coefficient of friction and normal load is highly nonlinear. In the presence of harmonic variations in normal load, this non-linearity causes a shift in the average coefficient of friction. For ideal lubricated contacts, the shearing component of friction is very small and for this case, it is shown that the maximum average reduction in the coefficient of friction is ten percent. When the shearing component is more significant, as with dry contacts, the shift is less. For example, when the shear strength is one-sixth the hardness of the softer material, the maximum average reduction in the coefficient of friction is five percent.


Sign in / Sign up

Export Citation Format

Share Document