Factors influencing the real trend of the coefficient of friction of two elastic bodies rolling over each other in the presence of dry friction

Author(s):  
H. Krause ◽  
A. Halim Demirci
Author(s):  
Н. П. Супрун ◽  
М. Л. Рябчиков ◽  
І. О. Іванов

Create a model for determining the coefficient of friction of textile materials to identify the main factors influencing the process of friction, taking into account the structural and mechanical properties of materials. Modeling of friction process in textile materials as a combination of adhesive and elastic phenomena. Roughness of solid bodies and the main parameters of roughness, such as the height of micro-irregularities, their pitch, sharpening, etc. described in many standards and scientific papers. However, the modeling of the friction process in such systems is very complicated due to the irregularity of distribution of microroughness. The analysis of literature data showed that the surface roughness of textile materials is an important and effective factor in predicting the tactile properties of products for various purposes. Estimation of surface roughness is usually carried out using subjective and objective methods, and the latter can be contact and non-contact. The paper develops a model for determining the coefficient of friction of textile materials to identify the main factors influencing the friction process, taking into account the structural and mechanical properties of materials. Friction force is presented as a combination of two main factors. The first is the elastic resistance to deformation, the second is the adhesive resistance to compression of the structural elements of the material. The main parameters influencing the coefficient of friction of textile fabrics - modulus of elasticity of structural elements, their geometrical parameters - surface density of textile material, linear density of structural elements are established. The obtained results allow to qualitatively predict the friction forces of a textile material with known parameters of its structural elements, as well as to normalize these parameters to create materials with specified friction indices. The obtained results make it possible to select the threads that form the textile material, according to the values of the modulus of elasticity, thickness, location density to ensure the minimum friction force.


Author(s):  
Marc Brandl ◽  
Friedrich Pfeiffer

Abstract This paper deals with the measurement of dry friction. A tribometer was developed in order to identify both the sticking and the sliding coefficient of friction. The aim was to determine the so called Stribeck-curve of any material in contact. The design of the plant is presented. Avoiding errors in recalculating the coefficient of friction, a detailed model of the plant as a multi body system with motor feedback was generated. Advantages of the tribometer are shown in simulations. Some results of measurements in comparison with simulation results are presented.


1970 ◽  
Vol 92 (2) ◽  
pp. 264-272 ◽  
Author(s):  
T. Tsukizoe ◽  
T. Hisakado

A study was made of surface roughness effects on dry friction between two metals, assuming that the asperities are cones of the slopes which depend on the surface roughness. The theoretical explanations were offered for coefficients of friction of the hard cones and spheres ploughing along the soft metal surface. A comparison of calculated values based on these with experimental data shows good agreement. Moreover, theoretical discussion was carried out of surface roughness effects on dry friction between two metal surfaces on the basis of the analyses of the frictional mechanism for a hard slider on the metal surface. The theoretical estimation of the coefficient of friction between two metal surfaces can be carried out by using the relations between the surface roughness and the slopes of the asperities, and the coefficient of friction due to the adhesion at the interface. The experiments also showed that when two metal surfaces are first loaded normally and then subjected to gradually increasing tangential forces, real area of contact between them increases and the maximum tangential microslip of them increases with the increase of the surface roughness.


Author(s):  
HyunWook Lee ◽  
Corina Sandu ◽  
Carvel Holton ◽  
Mehdi Ahmadian

The coefficient of friction (CoF) is one of the most important parameters for the contact between the wheel and the rail. Accurate estimation or measurement of the CoF has a very important role, both in terms of modeling the train dynamics and in terms of reducing operational costs in the long-term. For ease of implementation, since the nature of the wheel-rail contact dynamics is very complex, the assumption of a constant CoF is still used in most theoretical studies. Nevertheless, experimental work indicates that the CoF depends on dynamic changes in various wheel-rail conditions, like sliding velocity, contact patch shape and size for stick and sliding region, wheel and rail geometry, wheel vibration, rail surface roughness and/or lubrication, etc. In this paper we present the proposed equation to model the nonlinear dry friction coefficient at the wheel-rail contact. The friction coefficient is calculated at the three different values for change in the damping ratio while maintaining all the other conditions the same. As expected, the analysis performed to estimate the dry friction coefficient based on the proposed equation and using NUCARS® simulation results shows that the coefficient of friction has a highly nonlinear dependence on its parameters.


2006 ◽  
pp. 52-57
Author(s):  
Zoltán Csizmazia ◽  
Ilona Nagy Polyák ◽  
Attila Kőkuti

The knowledge of the physical characteristics of fertiliser particles is essential for the constructors and operators of fertiliser distributors. Among physical characteristics, the most important are the frictional and aerodynamic properties for the description of particle movement. Adjustable angled slopes, shearing boxes and various rotating disks are used to identify frictional properties. We have developed a high precision shearing box with digital force measuring cells and a distance signaller (incremental transducer) that we use for slide tests efficiently. We measured the frictional characteristics of 6 different fertilisers: the inner coefficient of friction and the coefficient of friction on ten test surfaces most commonly used in machinery, and we specified the relationship between displacement, loading and the coefficient of friction. We can conclude that the material of the frictional surface significantly influences the force of friction.However, our experience tells us that the shearing box is not suitable for the measurement of the inner friction, since the examined particles slide on the metal surface of the shearing box in a growing extent in the course of displacement, so it does not measure the real inner friction. Therefore, in our experiment we have developed rotating shearing equipment with a constant shearing surface to identify the inner friction. We tested the equipment with fertilisers and we identified the inner frictional characteristics of 6 different fertilisers. With the developed rotating shearing apparatus we could measure the real inner friction of the particles.To identify the aerodynamic characteristics of granules, wind tunnels and free-fall tests are used. An elutriator have been developed for our investigation. We have used fertilisers for testing the measuring equipment and we have identified the aerodynamic characteristics of 6 different fertilisers.


Author(s):  
S.A. Silkin ◽  
A.V. Gotelyak ◽  
N. Tsyntsaru ◽  
A.I. Dikusar ◽  
R. Kreivaitis ◽  
...  

Evaluation of tribological behaviour of Fe-W, Ni-W and Co-W coatings produced by electrodeposition at various bulk current densities (BCD) was under investigation in the given study. BCD does not have essential effect on the microhardness and wear characteristics of Fe-W and Co-W coatings. But the scratch tests reveal the presence of such influence. These tests showed superior wear resistance for the coatings obtained at low BCD. It was found that BCD has influence on wear resistance of Ni-W coatings under dry friction conditions. The BCD also has an influence on the coefficient of friction of Fe-W and Ni-W coatings at dry friction conditions. However, such an effect is opposite to that, observed at the scratch test.


2012 ◽  
Vol 40 (3) ◽  
pp. 186-200
Author(s):  
Yusuke Minami ◽  
Tomoaki Iwai ◽  
Yutaka Shoukaku

ABSTRACT Porous rubber is often used as the tread rubber of studless tires because of its higher coefficient of friction on icy surfaces, as the real contact area is larger because of its lower elastic modulus. It is said that the real contact area increases owing to the water absorption into the pores. The purpose of this study was to clarify the effect of pores on the surface of porous rubber during sliding under wet conditions. In this experiment, porous rubber was rubbed with a dove prism under wet conditions, so as to measure the coefficient of friction in concurrence with observing the friction surface. The total internal reflection method was adopted to distinguish the real contact area from the wet contact area. The real contact area was observed as a black area in captured image. Particle-tracking velocimetry was also conducted to visualize the water flow in the vicinity of pores during the sliding. The results of this study show that the absorption of water into the pores was not observed. The pore contained an air bubble during the sliding. The water flow detouring around the air bubble in the pore was also observed. In regard to contact, the front edge of the pore was not in contact with the mating dove prism. On the other hand, the rear edge of the pore was clearly seen as a black arc even if the pore left the dove prism. Thus, the rear edge of the pore contacting with the dove prism most likely wipes the water, so that the coefficient of friction of rubber with the pore was higher than that without the pore.


2018 ◽  
Vol 19 (12) ◽  
pp. 658-661
Author(s):  
Sylwester Stawarz ◽  
Magdalena Stawarz ◽  
Robert Gumiński ◽  
Wojciech Kucharczyk

The article discusses the results of tribological tests of epoxy and resol composites. There was examined the surface condition of samples of composites operating in sliding nodes. It has been found that it is possible to use cheaper resole resins for sliding composites (instead of Epidian 5). Tests that have been carried out showed that increasing the PTFE content in the composite resulted in lowering both the coefficient of friction and wear. X-ray analysis results con-firmed the occurrence of the selective transfer phenomenon


2021 ◽  
Vol 63 (9) ◽  
pp. 836-841
Author(s):  
Recai Fatih Tunay ◽  
Hayder Isam Abdulzahra Al Saadi

Abstract The tribological properties of aluminum based Al-25Zn-1Mg alloy was experimentally investigated in an MSc thesis, and the results are presented in this study. To this purpose, Al-25Zn-1Mg was commercially produced by casting. The prepared samples were divided into seven groups: no-process, solution treatment, and artificial aging for 1, 3, 6, 12 and 24 hours. Aged and untreated samples were subjected to tribological experiments under conditions of dry friction under 5 N and 10 N loads at speed of 200 rpm, 400 rpm and 800 rpm for a distance of 500 m. As a result of the tests, it was found that hardness increases in all samples depending on the aging process. It was also found that when the test speed was kept constant, the coefficient of friction increased with increasing load.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Sridhar Lanka ◽  
Evgeniya Alexandrova ◽  
Marina Kozhukhova ◽  
Md Syam Hasan ◽  
Michael Nosonovsky ◽  
...  

Hydrophobic and self-cleaning photocatalytic ceramics and concrete with potential for the superhydrophobicity are promising novel materials for civil engineering applications including buildings, bridges, road pavements, and airport runways. Due to embedded liquid-repellent properties, such materials have low water and salt absorption and, therefore, enhanced durability. However, in applications requiring high traction (e.g., tire and pavement), there is a concern that reduced adhesion may compromise the friction. This paper reports on wetting, dry friction, and roughness properties of TiO2 coated (hydrophilic) and polymethyl hydrogen siloxane (PMHS) coated (hydrophobic) self-cleaning ceramic tiles. The coefficient of friction values of the tile–rubber interface do not change significantly with the applications of the coatings up to 0.67 for hydrophilic TiO2 based and up to 0.46 for hydrophobic TiO2 + PMHS coatings versus 0.45 for uncoated reference. Friction has adhesion and roughness-related components and this response can be attributed to the roughness component of friction due to TiO2 coating. The challenges related to hydrophobic coatings, including the durability and future research, are also discussed.


Sign in / Sign up

Export Citation Format

Share Document