THE INFLUENCE OF UNIAXIAL COMPRESSION ON THE FRICTION COEFFICIENT (POLYMER–STEEL PAIR), WEAR, AND HARDNESS IN SELECTED THERMOPLASTICS

Tribologia ◽  
2018 ◽  
Vol 279 (3) ◽  
pp. 77-82 ◽  
Author(s):  
Maciej KUJAWA

Plastic plain bearings are deformed during assembly. According to one of the leading manufacturers of plastic sliding elements, the bushing’s internal diameter may be reduced by up to 2.5%. Moreover, plastic sliding elements are increasingly used in harsh conditions (e.g., under high pressure). However, there are no papers that describe the influence of deformation under compression on the tribological properties of plastics. Specimens made of PTFE, PA6, and PE-HD were deformed while conducting the current research, and this deformation was maintained during cooperation with steel. The results of microhardness, wear, and the coefficient of friction tests were compared to data gathered during tests of non-deformed specimens. During deformation under compression (e ≈ 6%), microhardness lowered by up to 30% (PTFE). A significant reduction of hardness (by up to 15%) was observed when strain was only 2%, and up to this value of strain, there is mainly elastic deformation in the polymer. Changes of the coefficient of friction values were insignificant. In terms of PTFE and PE-HD, during deformation under compression up to e ≈ 6% , the block scar volumes were 20% and 40% larger, respectively, than the non-deformed form of specimens. In terms of PA6, the change in block scar volume was insignificant. It may seem that tension and compression ought to cause totally different effects. However, the comparison of the current results and the results described in the previous paper exposes that these two different processes led to the same effects – reducing hardness and increasing wear. Deformation of plastic sliding components as an effect of assembly appears to be minor; however, it affects polymer microhardness and wear resistance.

2007 ◽  
Vol 280-283 ◽  
pp. 1445-1448 ◽  
Author(s):  
Guo Gang Zhao ◽  
Fu Ming Deng

Ni-P-CNTs composite coating were deposited by electroless plating. The factors which influenced the content of carbon nanotubes in deposits, such as the types of agitation, surfactants and carbon nanotubes concentration in the plating bath, were examined. The surface morphology, structure and properties, such as microhardness, wear resistance and friction coefficient of the -CNTs coating, were investigated. The results showed that the Ni-P-CNTs composite coating greatly increased the hardness and wear resistance and decreased the coefficient of friction with the increase of the content of carbon nanotubes in deposits, and the introduced carbon nanotubes did not change the structure of the Ni-P marix of the composite coating.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ting Wang ◽  
Hanfei Guo ◽  
Jianjun Qiao ◽  
Xiaoxue Liu ◽  
Zhixin Fan

PurposeTo address the lack of data in this field and determine the relationship between the coefficient of friction and the interference between locomotive wheels and axles, this study evaluates the theoretical relationship between the coefficient of friction and the interference under elastic deformation.Design/methodology/approachWhen using numerical analyses to study the mechanical state of the contacting components of the wheels and axle, the interference between the axle parts and the coefficient of friction between the axle parts are two important influencing factors. Currently, as the range of the coefficient of friction between the wheel and axle in interference remains unknown, it is generally considered that the coefficient of friction is only related to the materials of the friction pair; the relationship between the interference and the coefficient of friction is often neglected.FindingsA total of 520 press-fitting experiments were conducted for 130 sets of wheels and axles of the HXD2 locomotive with 4 types of interferences, in order to obtain the relationship between the coefficient of friction between the locomotive wheel and axle and the amount of interference. These results are expected to serve as a reference for selecting the coefficient of friction when designing axle structures with the rolling stock, research on the press-fitting process and evaluations of the fatigue life.Originality/valueThe study provides a basis for the selection of friction coefficient and interference amount in the design of locomotive wheels and axles.


Wear ◽  
1969 ◽  
Vol 13 (3) ◽  
pp. 163-174 ◽  
Author(s):  
G.H. Jirgal ◽  
D.L. Zellmer

Author(s):  
В.Ю. Фоминский ◽  
В.Н. Неволин ◽  
Д.В. Фоминский ◽  
Р.И. Романов ◽  
М.Д. Грицкевич

The results of a comparative study of the friction and wear of MoSx and MoSex thin film coatings that was carried out in an oxidizing medium (a mixture of argon and air) at a temperature of -100°C are presented. The films were obtained by pulsed laser deposition from MoS2, MoSe2, and Mo targets in vacuum and H2S. It was established that Se-containing coatings significantly exceeded the S-containing coatings in terms of wear resistance and provided a friction coefficient of ~ 0.09. The properties of MoSx films depended on the S concentration, which determines the local packing of atoms in the amorphous structure of the film. The coefficient of friction for MoS3 films after running-in turned out to be half as much as that for MoS2 films, and its value was 0.08.


Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 448 ◽  
Author(s):  
Jichun Xing ◽  
Huajun Li ◽  
Dechun Liu

Tactile feedback technology has important development prospects in interactive technology. In order to enrich the tactile sense of haptic devices under simple control, a piezoelectric haptic feedback device is proposed. The piezoelectric tactile feedback device can realize tactile changes in different excitation voltage amplitudes, different excitation frequencies, and different directions through the ciliary body structure. The principle of the anisotropic vibration of the ciliary body structure was analyzed here, and a tactile model was established. The equivalent friction coefficient under full-coverage and local-coverage of the skin of the touch beam was deduced and solved. The effect of system parameters on the friction coefficient was analyzed. The results showed that in the full-coverage, the tactile effect is mainly affected by the proportion of the same directional ciliary bodies and the excitation frequency. The larger the proportion of the same direction ciliary body is, the smaller the coefficient of friction is. The larger the excitation frequency is, the greater the coefficient of friction is. In the local-coverage, the tactile effect is mainly affected by the touch position and voltage amplitude. When changing the touch pressure, it has a certain effect on the change of touch, but it is relatively weak. The experiment on the sliding friction of a cantilever touch beam and the experiment of human factor were conducted. The experimental results of the sliding friction experiment are basically consistent with the theoretical calculations. In the human factor experiment, the effects of haptic regulation are mainly affected by voltage or structure of the ciliary bodies.


1974 ◽  
Vol 17 (103) ◽  
pp. 157-164 ◽  
Author(s):  
Masayoshi FUKUDA ◽  
Katsuhiko YAMAGUCHI

2014 ◽  
Vol 474 ◽  
pp. 303-308 ◽  
Author(s):  
Eva Labašová

The coefficient of friction for the bronze material (CuZn25Al6) with inset graphite beds is investigated in the present paper. Friction coefficient was investigated experimentally by the testing machine Tribotestor`89 which uses the principle of the ring on ring method. Tribotestor`89 machine may be classed to the rotary tribometers. The tested sliding pairs were of the same material. The internal bushing performed a rotational movement with constant sliding speed (v = 0.8 m s-1). The external fixed bushing was exposed to the normal load, which was of different sizes and different variations. Process of load was increased from level 50 N to 200 N (400 N, 600 N) during run up 600 s, after the run up the appropriate level of load was held.The forth test had a rectangular shape of loading with direct current component 400 N and the amplitude 200 N period 600 s, the whole test took 1800 s. The obtained results reveal that friction coefficient decreases with the increase of normal load. Further, that the coefficient of friction was found smaller at constant load, as compared to rectangular shape of loading.


2005 ◽  
Vol 473-474 ◽  
pp. 255-260 ◽  
Author(s):  
T. Sebestyén ◽  
Gábor Buza ◽  
F. Franek ◽  
János Takács ◽  
Zoltán Kálazi ◽  
...  

In this work we intend to investigate the surface properties of laser sintered and coated parts, by measurement of friction coefficient and wear rate. The main aim of this research is to justify laser sintered prototype tools for injection molding of fibre-reinforced polymers. For increase of wear resistance we used hard Co-based and Fe-based coatings on laser-sintered phosphorous bronze and unalloyed steel substrate. Short carbon- and glass-fibre-reinforced polymers were used as counter bodies. For the tribological laboratory model tests a pin-on-disk test rig was used. In case of coated parts – with higher wear resistance – we used a cylinder-on-cylinder tribometer. The tribological properties were determined at different load conditions. Our results show that the friction coefficient and wear resistance of laser treated surfaces are good. The coefficient of friction of coated specimens is slightly less, but the wear rate is significantly less.


2021 ◽  
Vol 2094 (4) ◽  
pp. 042038
Author(s):  
S N Vikharev ◽  
VA Morkovin

Abstract Object of research of article is the drawing of bars plate in the refiners at refining of chips and wood pulp. On the basis of the theory of contact interaction of bars influence of the drawing of plate on characteristics of contact processes is investigated. The friction coefficient between plate decreases at increase in density of contact of bars. At increase in an angle of crossing of bars rotor and stator and refining of pulp with concentration up to 6% the coefficient of friction decreases. At increase in an angle of crossing of bars chips and pulp with concentration over 10% the coefficient of friction increases. Therefore it is recommended to increase the angle of crossing of bars rotor and stator at refining of pulp of low concentration, and at refining of pulp of concentration over 10% and chips - to reduce, up to a radial arrangement.


2020 ◽  
Vol 992 ◽  
pp. 745-750
Author(s):  
A.P. Vasilev ◽  
T.S. Struchkova ◽  
A.G. Alekseev

This paper presents the results from the investigation of effect the carbon fibers with tungsten disulfide on the mechanical and tribological properties of PTFE. Is carried out a comparison of mechanical and tribological properties of polymer composites PTFE-based with carbon fibers and PTFE with complex filler (carbon fibers with tungsten disulfide). It is shown that at a content of 8 wt.% CF+1 wt.% WS2 in PTFE, wear resistance increases significantly while maintaining the tensile strength, relative elongation at break and low coefficient of friction at the level of initial PTFE. The results of X-ray analysis and investigation of SEM supramolecular structure and friction surfaces of PTFE and polymer composites are presented. It is shown that the degree of crystallinity of polymer composites increases in comparison with the initial PTFE. The images of scanning electron microscope reveal that particles of tungsten disulfide concentrating on the friction surface is likely responsible to a reduction in the coefficient of friction and increase the wear resistance of PTFE-based polymer composites with complex fillers.


Sign in / Sign up

Export Citation Format

Share Document