Imbalances in High Precision Cutting Machinery

Author(s):  
Jenny Niebsch ◽  
Ronny Ramlau

In high precision cutting processes it is very important to have a highly balanced system in order to produce components in optical quality. Achieving the best possible balancing state is a time consuming process. Therefor the prediction of the influence of the balancing state on the surface quality of the component is desirable. On the other hand such a prediction model should enable us to compute an objective necessary balancing state for a desired surface quality and thus save balancing time. In this article we present a model of an high precision cutting experimental platform that describes vibrations of the platform caused by imbalances and forces from the cutting process. To compute imbalances from vibrational measurements, regularizations techniques for the solution of inverse and ill-posed problems are employed and presented.

2016 ◽  
Vol 106 (01-02) ◽  
pp. 39-43
Author(s):  
Y. Babenko ◽  
T. Mayer ◽  
A. Gebhardt

Dieser Fachartikel befasst sich mit der Untersuchung des Potentials der Ultraschallüberlagerung beim Trennschleifen moderner Faserverbundwerkstoffe. Es wurde eine Zerspankraftanalyse des Trennschleifprozesses am CFK-Werkstück mit variierenden Prozessparametern durchgeführt. Zudem wurden die Oberflächenqualitäten der Schnittkanten betrachtet.   The presented study describes the investigation of the potential of ultrasound abrasive cutting of modern fiber composites. A force analysis of the abrasive cutting process of CFRP was conducted, while the process parameters were varied. In addition, the surface quality of the machined workpieces was observed.


2005 ◽  
Vol 291-292 ◽  
pp. 133-138
Author(s):  
Fei Hu Zhang ◽  
L.J. Li ◽  
Shen Dong

It is a cost-effective technology to obtain aspheric optics made from optical glass and other brittle materials using pressing mould. The optical quality of molded optics is determined mostly by the surface quality of the mould, which means poor mould surface with lots of cutter marks will result in adhesion phenomena and error replication between the optics and mould. [1] In this article, a chatter model about parallel grinding system was presented, and the reasons of chatter induced by velocity feed back was analyzed and simulated. By using parallel grinding system integrated ELID technology, and wheel with greater cross-section radius in rough grinding and constant grinding velocity in fine grinding, the amplitude of cutter marks in the surface of mould was minimized and the quality of the mould surface was improved.


2017 ◽  
Vol 24 (Supp02) ◽  
pp. 1850033
Author(s):  
WENYONG SHI ◽  
YAN MA ◽  
CHUNMEI YANG ◽  
BIN JIANG ◽  
ZHE LI

Milling processing is an important way to obtain wood–polyethylene composite (WPC) end products. In order to improve the processing efficiency and surface quality of WPC and meet the practical application requirements, this paper focussed on morphology and roughness of the WPC-milled surface and studied surface quality changes under different cutting parameters and milling methods through multi-parameters milling experiments. The milling surface morphology and roughness of WPC were analyzed and measured during cut-in, cutting and cut-out sections. It also revealed the affect rule of different cutting parameters and milling methods on milled surface morphology and roughness. The results show that the milling surface roughness of WPC products with wood powder content of 70% is significantly larger than the one whose wood powder content is 60%, and defects such as holes are also relatively more. Finally, a surface roughness prediction model was established based on the mathematical regression method and its multi-factor simulation was carried out. A comparative analysis of predictive and experimental values was performed to verify the reliability of the model. It could also provide theoretical guidance and technical guarantee for high processing quality of WPC milling and cutting.


2009 ◽  
Vol 404 ◽  
pp. 97-102
Author(s):  
Kui Liu ◽  
S.T. Ng ◽  
K.C. Shaw ◽  
G.C. Lim

Super polishing experiments were carried out to investigate the effects of polishing parameters on surface quality of stainless steel lens moulding inserts, and to optimize polishing conditions. Experimental results indicated that optical quality surface of stainless steel lens moulding inserts can be achieved through a two-step polishing process: fast polishing with a soft wood head and coarse diamond paste, and fine polishing with a nylon-covered steel ball head and fine diamond paste. A diameter of 20 mm stainless steel lens moulding insert with a surface roughness Ra of 7.6 nm has been successfully achieved using the two-step super polishing process.


2012 ◽  
Vol 490-495 ◽  
pp. 1551-1554
Author(s):  
Jian Zhong Zhang ◽  
Xin Wang ◽  
Yue Zhang

It has been one of the difficulties that high-precision small hole on stainless steel is machined. The supersonic vibration boring acoustic system is installed in the lathe. The supersonic wave energy applies to tool to create pulse power on the cutting process. The separation vibration cutting is achieved by the pulse force. The comparative tests on boring surface quality are carried. The quality of surface machined by this method is compared to that by grinding. This cutting is the green cutting. The boring process system is stability. The cutting force is greatly reduced. The cutting temperature is at room temperature. The tool life is greatly increased. Surface quality and shape precision is greatly improved. The regulations of the ultrasonic vibration boring dry cutting of stainless steel are also summarized. The test results show that the ultrasonic vibration boring by double cutter is of very superior cutting mechanism and is a high-precision thin - long deep - hole machining of stainless steel materials, efficient cutting methods.


2020 ◽  
pp. 78-81
Author(s):  
B.Ya. Mokritskiy ◽  
D.A. Savinov ◽  
Ya.V. Konyuhova

The possibility of controlling the effectiveness of the cutting process taking into account the quality of replaceable inserts in high-precision machining of parts to prevent spindle imbalance and tool destruction with low quality of the inserts is considered. Keywords: cutting, replaceable insert, spindle, imbalance, machining accuracy. [email protected]


2016 ◽  
Vol 10 (3) ◽  
pp. 310-317 ◽  
Author(s):  
Yuto Kojima ◽  
◽  
Ryutaro Tanaka ◽  
Yasuo Yamane ◽  
Katsuhiko Sekiya ◽  
...  

This research was conducted to investigate the characteristics of electrodeposited diamond core drills when used to cut CFRP.An eccentric core drill was usedto improve cutting characteristics. First of all, the cutting characteristics of a normal core drill were investigated at a few different feed rates and compared with those of a diamond coated twist drill. The effect of air assistance on chip evacuation were also investigated. The cutting forces, surface roughness profile of the hole, and tool appearance were used for evaluation. At the same feed rate, more cutting force was necessary for the normal core drill than for the twist drill. When air was blown in, the cutting forces required by the core drill decreased drastically, but delamination was evident. When air was drawn out, the cutting forces of the normal core drill were almost the same as when there was no air assistance. On the other hand, when an eccentric core drill was used, the cutting force required was lower when air was drawn out than when it was blown in. Additionally, the surface quality of the hole when air was drawn out was greater than when it was blown in. When the eccentric core drill with slits was used while air was drawn out, the cutting forces, surface quality of the hole, and tool appearance were the same as when an eccentric core drill without slits was used. However, there was little core jamming. Therefore, the eccentric core drill with slits had the longest tool life.


2014 ◽  
Vol 797 ◽  
pp. 59-64 ◽  
Author(s):  
F.J. Trujillo ◽  
Mariano Marcos Bárcena ◽  
L. Sevilla

In this work, a study of the influence of the cutting parameters on superficial quality of dry-turned UNS A97075 test bars has been carried out. The superficial quality has been evaluated trough the arithmetical average roughness,Ra. In addition, the evolution ofRaas a function of the axial machining length has been analyzed. In order to do this, a set of machining tests has been performed under different combinations of cutting speed and feed. The experimental data have revealed a high sensitivity to change ofRawith feed, whereas this sensitivity is lower with cutting speed. On the other hand, a tendency to decreaseRawith the axial machining length has been found. Finally, an experimental prediction model forRahas been developed. This model allows predicting the value ofRaas a function of the cutting parameters and the machining time.


2011 ◽  
Vol 201-203 ◽  
pp. 2334-2337 ◽  
Author(s):  
Zhi Qiang Zhang ◽  
Wen Jin Wang ◽  
Zhao Jian ◽  
Tai Yong Wang

The part’s surface quality of NC machining is influenced by the chord error greatly. The confined chord error algorithm for machining complex parametric surface is proposed for controlling the chord error. The arc length error is utilized to control the chord error of the interpolated point indirectly. The arc length error of interpolated point is computed by trapezia expressions, the coordinate and the first order derivative of interpolated point is computed by the interpolation algorithm. The computed error of confined chord error algorithm is discussed and the simulation indicate that the destined precision of the chord error can be satisfied by this algorithm.


Sign in / Sign up

Export Citation Format

Share Document