Intermittent Chaotic Dynamics of Rail Axle Supported by Roller Bearings

Author(s):  
S. P. Harsha ◽  
C. ‘Nat’ Nataraj

In this paper, intermittent chaotic analysis of high speed rail axle supported by roller bearings has been analyzed. In the analytical formulation, the contacts between rolling elements and races are considered as nonlinear springs, whose stiffness values are obtained by using Hertzian elastic contact deformation theory. The results show the appearance of instability and chaos in the dynamic response as the speed of the axle-bearing system is changed. Period doubling and mechanism of intermittency have been observed which lead to chaos. The appearance of regions of periodic, sub-harmonic and chaotic behavior is seen to be strongly dependent on the radial clearance. Poincare´ maps, time response and frequency spectra are used to elucidate and to illustrate the diversity of the system behavior.

Author(s):  
S. P. Harsha ◽  
C. Nataraj

In the paper, the effects of the number of rolling elements and wave number of surface waviness on the nonlinear dynamic analysis of a rotor-bearing system has been studied. In the analytical formulation, the contacts between rolling elements and races are considered as nonlinear springs, whose stiffnesses are obtained by using Hertzian elastic contact deformation theory. The results are presented in the form of Fast Fourier Transformations (FFT) and Poincare´ maps, which show that the vibration characteristics of the rotor and its bearings change when the bearings operate in different regions of their nonlinear load deflection characteristics. The appearance of regions of periodic, sub-harmonic and chaotic behavior has been observed to be strongly dependent on number of rolling elements.


2021 ◽  
Author(s):  
Azzedine Dadouche ◽  
Rami Kerrouche

Abstract Rolling-element bearings (REB) can develop severe damage due to skidding (slipping) between the rolling elements and bearing races. Skidding can be described as gross sliding between the bearing surfaces in relative motion and can result in significant surface distress such as smearing, especially at light loads and high rotational speeds. Under these conditions, skidding occurs between the rolling elements and the bearing races, leading to increased wear (higher friction coefficient), elevated bearing temperature, significant power losses and reduced service life of the bearing. The main objective of this study is to investigate the significance of various sensing technologies (induction, vibration, ultrasound, acoustic and optical) in detecting skidding in standard series roller bearings as well as custom-made roller bearings for aero engine applications. The bearings have a bore diameter of 60 mm and 90 mm, respectively. Jet and under race lubrication techniques have been used to supply oil to the bearings under test. The custom-made aero engine test bearing features special channels to allow under race lubrication of the rollers/races contacts as well as the cage land. The effect of radial load, rotational speed and oil flow on roller skidding have also been investigated and analyzed. Tests have been performed on a dedicated high speed experimental bearing facility and data was recorded using a commercially-available data acquisition system.


1982 ◽  
Vol 104 (1) ◽  
pp. 175-184
Author(s):  
M. Savage ◽  
S. H. Loewenthal

A theory of kinematic stabilization of rolling cylinders is developed for high-speed cylindrical roller bearings. This stabilization requires race and roller crowning to produce changes in the rolling geometry as the roller shifts axially. These changes put a reverse skew in the rolling elements by changing the rolling taper. Twelve basic possible bearing modifications are identified in this paper. Four have single transverse convex curvature in the rollers while eight have rollers with compound transverse curvature composed of a central cylindrical band of constant radius surrounded by symmetric bands with both slope and transverse curvature.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Yu-Yan Zhang ◽  
Xiao-Li Wang ◽  
Xiao-Qing Zhang ◽  
Xiao-Liang Yan

The nonlinear dynamic behaviors of a high-speed rotor-ball bearing system under elastohydrodynamic lubrication (EHL) are investigated. First, the numerical curve fittings for stiffness and damping coefficients of lubricated contacts between rolling elements and races are undertaken, and then the fitted formulae are introduced to the equations of motion of the rotor-ball bearing system to investigate its nonlinear characteristics. Furthermore, the time responses, power spectra, phase trajectories, orbit plots, and bifurcation diagrams for cases of ignoring and considering the lubrication condition in bearings are inspected and compared. The results indicate that, when lubrication is taken into account, the amplitudes of vibration displacements and velocities of the rotor system increase, and the appearance of different regions of periodic, quasi-periodic, and chaotic behavior is strongly dependent on the speed and load.


1960 ◽  
Vol 82 (2) ◽  
pp. 309-320 ◽  
Author(s):  
A. B. Jones

A completely general solution is obtained whereby the elastic compliances of a system of any number of ball and radial roller bearings under any system of loads can be determined. Elastic yielding of the shaft and supporting structure are considered as well as centrifugal and gyroscopic loading of the rolling elements under high-speed operation. The solution defines the loading and attitude of each rolling element in each bearing of the system as well as the displacement of each inner ring with respect to its outer ring. For ball bearings the precise location of the load paths in each raceway are found. Life estimates can be more accurately made since the fatigue effects can be evaluated over known paths in the raceways. The solution, which is accomplished numerically by iterative techniques, has been programmed for an IBM-704 digital computer.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shun-Chang Chang

The main objective of this study is to explore the complex nonlinear dynamics and chaos control in power systems. The rich dynamics of power systems were observed over a range of parameter values in the bifurcation diagram. Also, a variety of periodic solutions and nonlinear phenomena could be expressed using various numerical skills, such as time responses, phase portraits, Poincaré maps, and frequency spectra. They have also shown that power systems can undergo a cascade of period-doubling bifurcations prior to the onset of chaos. In this study, the Lyapunov exponent and Lyapunov dimension were employed to identify the onset of chaotic motion. Also, state feedback control and dither signal control were applied to quench the chaotic behavior of power systems. Some simulation results were shown to demonstrate the effectiveness of these proposed control approaches.


Author(s):  
Azzedine Dadouche ◽  
Rami Kerrouche

Abstract Rolling-element bearings (REB) can develop severe damage due to skidding (slipping) between the rolling elements and bearing races. Skidding can be described as gross sliding between the bearing surfaces in relative motion and can result in significant surface distress such as smearing, especially at light loads and high rotational speeds. Under these conditions, skidding occurs between the rolling elements and the bearing races, leading to increased wear (higher friction coefficient), elevated bearing temperature, significant power losses and reduced service life of the bearing. The main objective of this study is to investigate the significance of various sensing technologies (induction, vibration, ultrasound, acoustic and optical) in detecting skidding in standard series roller bearings as well as custom-made roller bearings for aero engine applications. The bearings have a bore diameter of 60 mm and 90 mm, respectively. Jet and under race lubrication techniques have been used to supply oil to the bearings under test. The custom-made aero engine test bearing features special channels to allow under race lubrication of the rollers/races contacts as well as the cage land. The effect of radial load, rotational speed and oil flow on roller skidding have also been investigated and analyzed. Tests have been performed on a dedicated high speed experimental bearing facility and data was recorded using a commercially-available data acquisition system.


Author(s):  
P. K. Kankar ◽  
Satish C. Sharma ◽  
S. P. Harsha

The paper investigates the non-linear dynamic response of an unbalanced rotor supported on ball bearings with outer race waviness. The excitation is due to unbalanced force and waviness on outer race. The sources of non-linearities are both the radial clearance as well as the Hertzian contact between races and rolling elements. The nonlinear responses due to unbalanced rotor supported on bearings are investigated. The combined effects like non-linear stiffness and non-linear damping for unbalanced rotor with bearing waviness have been considered and analyzed in detail for a rotor bearing system. In the mathematical formulation, the contacts between the rolling elements and the races are considered as an oscillating spring-mass-damper system. The appearance of regions of periodic, sub-harmonic and chaotic behavior is seen to be strongly dependent on the number of waves in the outer race. The results show the appearance of instability and chaos in the dynamic response as the number of waves in the outer race is changed. The study indicates that the interaction of ball passage frequency (ωbp) due to outer race waviness and rotational frequency (X) due to the unbalanced rotor force. Poincaré maps and frequency responses are used to elucidate and to illustrate the diversity of the system behavior.


2010 ◽  
Vol 15 (3) ◽  
pp. 361-375 ◽  
Author(s):  
R. K. Upadhyay ◽  
S. N. Raw ◽  
V. Rai

We study how predator behavior influences community dynamics of predatorprey systems. It turns out that predator behavior plays a dominant role in community dynamics. The hybrid model studied in this paper reveals that period-doubling and period-doubling reversals can generate short-term recurrent chaos (STRC), which mimics chaotic dynamics observed in natural populations. STRC manifests itself when deterministic changes in a system parameter interrupt chaotic behavior at unpredictable intervals. Numerical results reinforce an earlier suggestion that period-doubling reversals could control chaotic dynamics in ecological models. In ecological terms, the prey and intermediate predator populations may go to extinction in the event of a catastrophe. The top predator is always a survivor. In contrast to this, this is not the case when the constituent populations are interacting through Holling type II functional response. Even this top predator can go to extinction in the event of such catastrophes.


Sign in / Sign up

Export Citation Format

Share Document