A Piezoelectric PZT Ceramic Multilayer Stack for Energy Harvesting Under Dynamic Forces

Author(s):  
Tian-Bing Xu ◽  
Emilie J. Siochi ◽  
Jin Ho Kang ◽  
Lei Zuo ◽  
Wanlu Zhou ◽  
...  

In this paper, we report the study of a “33” longitudinal mode, piezoelectric PZT ceramic multilayer stack (PZT-Stack) with high effective piezoelectric coefficient for broader bandwidth high-performance piezoelectric energy harvesting transducers (PEHTs). The PZT-Stack is composed of 300 layers of 0.1 mm thick PZT plates, with overall dimensions of 32.4 mm × 7.0 mm × 7.0 mm. Experiments were carried out with dynamic forces in a broad bandwidth ranging from 0.5 Hz to 25 kHz. The measured results show that the effective piezoelectric coefficients (EPC, deff) of the PZT-stack is about 1 × 105 pC/N at off-resonance frequencies and 1.39 × 106 pC/N at resonance, which is order of magnitude larger than that of traditional PEHTs. The EPC do not change significantly with applied dynamic forces having root mean square (RMS) values ranging from 1 N to 40 N. In resonance mode, 231 mW of electrical power was harvested at 2,479 Hz with a dynamic force of 11.6 Nrms, and 7.6 mW of electrical power was generated at a frequency of 2,114 Hz with 1 Nrms dynamic force. In off-resonance mode, an electrical power of 18.7 mW was obtained at 680 Hz with a 40 Nrms dynamic force. A theoretical model of energy harvesting for the PZT-Stack was established. The modeled results matched well with experimental measurements. This study demonstrated that structures with high EPC enable PEHTs to harvest more electrical energy from mechanical vibrations or motions, suggesting an effective design for high-performance low-profile PEHTs with potential applications in military, aerospace, and portable electronics. In addition, this study provides a route for using piezoelectric multilayer stacks for active or semi-active adaptive control to damp, harvest or transform unwanted vibrations into useful electrical energy.

2018 ◽  
Vol 29 (18) ◽  
pp. 3572-3581
Author(s):  
Suihan Liu ◽  
Ali Imani Azad ◽  
Rigoberto Burgueño

Piezoelectric energy harvesting from ambient vibrations is well studied, but harvesting from quasi-static responses is not yet fully explored. The lack of attention is because quasi-static actions are much slower than the resonance frequency of piezoelectric oscillators to achieve optimal outputs; however, they can be a common mechanical energy resource: from large civil structure deformations to biomechanical motions. The recent advances in bio-micro-electro-mechanical systems and wireless sensor technologies are motivating the study of piezoelectric energy harvesting from quasi-static conditions for low-power budget devices. This article presents a new approach of using quasi-static deformations to generate electrical power through an axially compressed bilaterally constrained strip with an attached piezoelectric layer. A theoretical model was developed to predict the strain distribution of the strip’s buckled configuration for calculating the electrical energy generation. Results from an experimental investigation and finite element simulations are in good agreement with the theoretical study. Test results from a prototyped device showed that a peak output power of 1.33 μW/cm2 was generated, which can adequately provide power supply for low-power budget devices. And a parametric study was also conducted to provide design guidance on selecting the dimensions of a device based on the external embedding structure.


Author(s):  
Wander G. R. Vieira ◽  
Fred Nitzsche ◽  
Carlos De Marqui

Converting aeroelastic vibrations into electricity for low-power generation has received growing attention over the past few years. Helicopter blades with embedded piezoelectric elements can provide electrical energy to power small electronic components. In this paper, the non-linear modeling and analysis of an electromechanically coupled cantilevered helicopter blade is presented for piezoelectric energy harvesting. A resistive load is considered in the electrical domain of the problem in order to quantify the electrical power output. The non-linear electromechanical model is derived based on the Variational-Asymptotic Method (VAM). The coupled non-linear rotary system is solved in the time-domain. A generalized-α integration method is used to guarantee numerical stability, adding numerical damping at high frequencies. The electromechanical behavior of the coupled rotating blade is investigated for increasing rotating speeds (stiffening effect).


Author(s):  
Saman Farhangdoust ◽  
Claudia Mederos ◽  
Behrouz Farkiani ◽  
Armin Mehrabi ◽  
Hossein Taheri ◽  
...  

Abstract This paper presents a creative energy harvesting system using a bimorph piezoelectric cantilever-beam to power wireless sensors in an IoT network for the Sunshine Skyway Bridge. The bimorph piezoelectric energy harvester (BPEH) comprises a cantilever beam as a substrate sandwiched between two piezoelectric layers to remarkably harness ambient vibrations of an inclined stay cable and convert them into electrical energy when the cable is subjected to a harmonic acceleration. To investigate and design the bridge energy harvesting system, a field measurement was required for collecting cable vibration data. The results of a non-contact laser vibrometer is used to remotely measure the dynamic characteristics of the inclined cables. A finite element study is employed to simulate a 3-D model of the proposed BPEH by COMSOL Multiphasics. The FE modelling results showed that the average power generated by the BPEH excited by a harmonic acceleration of 1 m/s2 at 1 Hz is up to 614 μW which satisfies the minimum electric power required for the sensor node in the proposed IoT network. In this research a LoRaWAN architecture is also developed to utilize the BPEH as a sustainable and sufficient power resource for an IoT platform which uses wireless sensor networks installed on the bridge stay cables to collect and remotely transfer bridge health monitoring data over the bridge in a low-power manner.


Author(s):  
Emanuele Frontoni ◽  
Adriano Mancini ◽  
Primo Zingaretti ◽  
Andrea Gatto

Advanced technical developments have increased the efficiency of devices in capturing trace amounts of energy from the environment (such as from human movements) and transforming them into electrical energy (e.g., to instantly charge mobile devices). In addition, advancements in microprocessor technology have increased power efficiency, effectively reducing power consumption requirements. In combination, these developments have sparked interest in the engineering community to develop more and more applications that utilize energy harvesting for power. The approach here described aims to designing and manufacturing an innovative easy-to-use and general-purpose device for energy harvesting in general purpose shoes. The novelty of this device is the integration of polymer and ceramic piezomaterials accomplished by injection molding. In this spirit, this paper examines different devices that can be built into a shoe, (where excess energy is readily harvested) and used for generating electrical power while walking. A Main purpose is the development of an indoor localization system embedded in shoes that periodically broadcasts a digital RFID as the bearer walks. Results are encouraging and real life test are conducted on the first series of prototypes.


Author(s):  
Jinki Kim ◽  
Patrick Dorin ◽  
K. W. Wang

Many common environmental vibration sources exhibit low and broad frequency spectra. In order to exploit such excitations, energy harvesting architectures utilizing nonlinearity, especially bistability, have been widely studied since the energetic interwell oscillations between their stable equilibria can provide enhanced power harvesting capability over a wider bandwidth compared to the linear counterpart. However, one of the limitations of these nonlinear architectures is that the interwell oscillation regime may not be activated for a low excitation level that is not strong enough to overcome the potential energy barrier, thus resulting in low amplitude intrawell response which provides poor energy harvesting performance. While the strategic integration of bistability and additional dynamic elements has shown potential to improve broadband energy harvesting performance by lowering the potential barrier, there is a clear opportunity to further improve the energy harvesting performance by extracting electrical power from the kinetic energy in the additional element that is induced when the potential barrier is lowered. To explore this opportunity and advance the state of the art, this research develops a novel hybrid bistable vibration energy harvesting system with a passive mechanism that not only adaptively lowers the potential energy barrier level to improve broadband performance but also exploits additional means to capture more usable electrical power. The proposed harvester is comprised of a cantilever beam with repulsive magnets, one attached at the free end and the other attached to a linear spring that is axially aligned with the cantilever (a spring-loaded magnet oscillator). This new approach capitalizes on the adaptive bistable potential that is passively realized by the spring-loaded magnet oscillator, which lowers the double-well potential energy barrier thereby facilitating the interwell oscillations of the cantilever across a broad range of excitation conditions, especially for low excitation amplitudes and frequencies. The interwell oscillation of the cantilever beam enhances not only the piezoelectric energy harvesting from the beam but also the electromagnetic energy harvesting from the spring-loaded magnet oscillator by inducing large amplitude vibrations of the magnet oscillator. Numerical investigations found that the proposed architecture yields significantly enhanced energy harvesting performance compared to the conventional bistable harvester with fixed magnet.


Author(s):  
Luã Guedes Costa ◽  
Luciana Loureiro da Silva Monteiro ◽  
Pedro Manuel Calas Lopes Pacheco ◽  
Marcelo Amorim Savi

Piezoelectric materials exhibit electromechanical coupling properties and have been gained importance over the last few decades due to their broad range of applications. Vibration-based energy harvesting systems have been proposed using the direct piezoelectric effect by converting mechanical into electrical energy. Although the great relevance of these systems, performance enhancement strategies are essential to improve the applicability of these system and have been studied substantially. This work addresses a numerical investigation of the influence of cubic polynomial nonlinearities in energy harvesting systems considering a bistable structure subjected to harmonic excitation. A deep parametric analysis is carried out employing nonlinear dynamics tools. Results show complex dynamical behaviors associated with the trigger of inter-well motion. Electrical power output and efficiency are monitored in order to evaluate the configurations associated with best system performances.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20527-20533 ◽  
Author(s):  
Sanggon Kim ◽  
Gerardo Ico ◽  
Yaocai Bai ◽  
Steve Yang ◽  
Jung-Ho Lee ◽  
...  

Magneto–mechano–electrical energy conversion in poly(vinylidenefluoride-trifluoroethylene) piezoelectric nanofibers integrated with magnetic nanoparticles in a particle-shape dependent manner.


2013 ◽  
Vol 8 (1) ◽  
pp. 155892501300800
Author(s):  
François M. Guillot ◽  
Haskell W. Beckham ◽  
Johannes Leisen

In the past few years, the growing need for alternative power sources has generated considerable interest in the field of energy harvesting. A particularly exciting possibility within that field is the development of fabrics capable of harnessing mechanical energy and delivering electrical power to sensors and wearable devices. This study presents an evaluation of the electromechanical performance of hollow lead zirconate titanate (PZT) fibers as the basis for the construction of such fabrics. The fibers feature individual polymer claddings surrounding electrodes directly deposited onto both inside and outside ceramic surfaces. This configuration optimizes the amount of electrical energy available by placing the electrodes in direct contact with the surface of the material and by maximizing the active piezoelectric volume. Hollow fibers were electroded, encapsulated in a polymer cladding, poled and characterized in terms of their electromechanical properties. They were then glued to a vibrating cantilever beam equipped with a strain gauge, and their energy harvesting performance was measured. It was found that the fibers generated twice as much energy density as commercial state-of-the-art flexible composite sensors. Finally, the influence of the polymer cladding on the strain transmission to the fiber was evaluated. These fibers have the potential to be woven into fabrics that could harvest mechanical energy from the environment and could eventually be integrated into clothing.


Author(s):  
Zheqi Lin ◽  
Hae Chang Gea ◽  
Shutian Liu

Converting ambient vibration energy into electrical energy using piezoelectric energy harvester has attracted much interest in the past decades. In this paper, topology optimization is applied to design the optimal layout of the piezoelectric energy harvesting devices. The objective function is defined as to maximize the energy harvesting performance over a range of ambient vibration frequencies. Pseudo excitation method (PEM) is applied to analyze structural stationary random responses. Sensitivity analysis is derived by the adjoint method. Numerical examples are presented to demonstrate the validity of the proposed approach.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 845 ◽  
Author(s):  
Abdolreza Pasharavesh ◽  
Reza Moheimani ◽  
Hamid Dalir

The deliberate introduction of nonlinearities is widely used as an effective technique for the bandwidth broadening of conventional linear energy harvesting devices. This approach not only results in a more uniform behavior of the output power within a wider frequency band through bending the resonance response, but also contributes to energy harvesting from low-frequency excitations by activation of superharmonic resonances. This article investigates the nonlinear dynamics of a monostable piezoelectric harvester under a self-powered electromagnetic actuation. To this end, the governing nonlinear partial differential equations of the proposed harvester are order-reduced and solved by means of the perturbation method of multiple scales. The results indicate that, according to the excitation amplitude and load resistance, different responses can be distinguished at the primary resonance. The system behavior may involve the traditional bending of response curves, Hopf bifurcations, and instability regions. Furthermore, an order-two superharmonic resonance is observed, which is activated at lower excitations in comparison to order-three conventional resonances of the Duffing-type resonator. This secondary resonance makes it possible to extract considerable amounts of power at fractions of natural frequency, which is very beneficial in micro-electro-mechanical systems (MEMS)-based harvesters with generally high resonance frequencies. The extracted power in both primary and superharmonic resonances are analytically calculated, then verified by a numerical solution where a good agreement is observed between the results.


Sign in / Sign up

Export Citation Format

Share Document