The Impact of Product Dissection Activities on the Novelty of Design Outcomes

Author(s):  
Christine A. Toh ◽  
Scarlett R. Miller ◽  
Gül E. Okudan Kremer

This paper explores the effect of a product dissection activity on design novelty in engineering design. Novelty is an important aspect of design ideation effectiveness. Therefore, identifying the factors that influence novelty will expand the understanding of the design process, as well as improve design pedagogy. Previous studies have found that participation in product dissection activities positively impacted creativity, but did not study creativity in terms of novelty, making it unclear if product dissection activities will impact the novelty of generated designs. Furthermore, although product dissection has been studied in team environments, individual factors such as the personality traits of the team members was not explored for their effect on the exposure to the dissection activity, and hence the effect on the novelty of generated designs. Our empirical experimentation showed that extraverted participants had a higher level of exposure to the body design dissection activity and developed more novel ideas than those who were not extraverts. These results contribute to our understanding on how team-based dissection activities influence the novelty of generated designs in an engineering design setting.

Author(s):  
Mohammad Alsager Alzayed ◽  
Scarlett R. Miller ◽  
Jessica Menold ◽  
Jacquelyn Huff ◽  
Christopher McComb

Abstract Research on empathy has been surging in popularity in the engineering design community since empathy is known to help designers develop a deeper understanding of the users’ needs. Because of this, the design community has been invested in devising and assessing empathic design activities. However, research on empathy has been primarily limited to individuals, meaning we do not know how it impacts team performance, particularly in the concept generation and selection stages of the design process. Specifically, it is unknown how the empathic composition of teams, average (elevation) and standard deviation (diversity) of team members’ empathy, would impact design outcomes in the concept generation and selection stages of the design process. Therefore, the goal of the current study was to investigate the impact of team trait empathy on concept generation and selection in an engineering design student project. This was accomplished through a computational simulation of 13,482 teams of noninteracting brainstorming individuals generated by a statistical bootstrapping technique drawing upon a design repository of 806 ideas generated by first-year engineering students. The main findings from the study indicate that the elevation in team empathy positively impacted simulated teams’ unique idea generation and selection while the diversity in team empathy positively impacted teams’ generation of useful ideas. The results from this study can be used to guide team formation in engineering design.


Author(s):  
Mohammad Alsager Alzayed ◽  
Christopher McComb ◽  
Samuel T. Hunter ◽  
Scarlett R. Miller

Product dissection has been highlighted as an effective means of interacting with example products in order to produce creative outcomes. While product dissection is often conducted as a team in engineering design education as a component of larger engineering design projects, the research on the effectiveness of product dissection activities has been primarily limited to individuals. Thus, the goal of this study was to investigate the impact of the type(s) of product dissected in a team environment on the breadth of the design space explored and the underlying influence of educational level on these effects. This was accomplished through a computational simulation of 7,000 nominal brainstorming teams generated by a statistical bootstrapping technique that accounted for all possible team configurations. Specifically, each team was composed of four team members based on a design repository of 463 ideas generated by first-year and senior engineering design students after a product dissection activity. The results of the study highlight that simulated senior engineering design teams explored a larger solution space than simulated first-year teams and that dissecting different types of products allowed for the exploration of a larger solution space for all of the teams. The results also showed that dissecting two analogically far and two simple products was most effective in expanding the solution space for simulated senior teams. The findings presented in this study can lead to a better understanding of how to most effectively deploy product dissection modules in engineering design education in order to maximize the solution space explored.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Christine A. Toh ◽  
Scarlett R. Miller ◽  
Gül E. Okudan Kremer

Although design novelty is a critical area of research in engineering design, most research in this space has focused on understanding and developing formal idea generation methods instead of focusing on the impact of current design practices. This is problematic because formal techniques are often not adopted in industry due to the burdensome steps often included in these methods, which limit the practicality and adoption of these methods. This study seeks to understand the impact of product dissection, a design method widely utilized in academia and industry, on design novelty in order to produce recommendations for the use or alterations of this method for supporting novelty in design. To investigate the impact of dissection, a study was conducted with 76 engineering students who completed a team-based dissection of an electric toothbrush and then individually generated ideas. The relationships between involvement in the dissection activity, the product dissected, the novelty and quantity of the ideas developed were investigated. The results reveal that team members who were more involved in the dissection activity generated concepts that were more novel than those who did not. In addition, the type of the dissected product also had an influence on design novelty. Finally, a positive correlation between the number of ideas generated and the novelty of the design concepts was identified. The results from this study are used to provide recommendations for leveraging product dissection for enhancing novelty in engineering design education and practice.


Author(s):  
Ali Kamyab ◽  
Kemper E. Lewis

Modern design methodologies have used Function Component Matrices in a variety of different ways in order to support various facets of an engineering design process. The mapping of functions to components can be used to model and capture the dependencies and relationships that exist. This process is accomplished by breaking down complicated functions into smaller, easier to understand functions. This decomposition allows engineers to get a better understanding for how a change in each component within a product will affect the overall operation of the product. Being able to recognize the impact of the propagation of a sub-function change will give designers a better understanding of the flexibility (or lack thereof) of choices they have when designing a product for customization. In turn they can be used to inform the consumer regarding the consequences their customization choices can have on the final product. This paper discusses how a Functional Component Matrix (FCM) can be used to assist in this process of product customization and understanding change propagation.


Author(s):  
Gay Lemons ◽  
Adam Carberry ◽  
Christopher Swan ◽  
Linda Jarvin

Service-based learning has become an emerging pedagogical tool for engineering education. Although there is a large body of literature reporting the benefits of service activities, most studies have relied on self-report measures and generalized learning contributions. Our evaluation went beyond self-perceptions by investigating the impact that service-based learning programs had on specific cognitive elements of engineering design. The primary goal of this project was to investigate what effects, if any, service activities had on the engineering design process. Verbal protocols were collected from ten engineering students during an open-ended, model-building design task. The five service students and five non-service students also completed post-task interviews and reflection papers. The students in our sample who had participated in service-based learning activities voiced more metacognitive phrases, demonstrated more accurate task analysis and clearer strategic planning skills, were more skilled at discriminating useful from superfluous information, and had a better understanding of clients’ needs and constraints. From our sample, it appears that participation in service-based learning activities enhances the design process of engineering students.


Author(s):  
Philip Rendell ◽  
Henry O’Grady ◽  
Brendan Breen ◽  
Alastair Clark ◽  
Steve Reece

In the United Kingdom the Nuclear Decommissioning Authority (NDA) has been charged with implementing Government policy for the long-term management of higher activity radioactive waste. The UK Government is leading a site selection process based on voluntarism and partnership with local communities interested in hosting such a facility and as set out in the ‘Managing Radioactive Waste Safely’ White Paper (2008). The NDA has set up the Radioactive Waste Management Directorate (RWMD) as the body responsible for planning, building and operating a geological disposal facility (GDF). RWMD will develop into a separately regulated Site Licence Company (SLC) responsible for the construction, operation and closure of the facility. RWMD will be the Design Authority for the GDF; requiring a formal process to ensure that the knowledge and integrity of the design is maintained. In 2010 RWMD published ‘Geological Disposal - Steps towards implementation’ which described the preparatory work that it is undertaking in planning the future work programme, and the phases of work needed to deliver the programme. RWMD has now developed a process for the design of the GDF to support this work. The engineering design process follows a staged approach, encompassing options development, requirements definition, and conceptual and detailed designs. Each stage finishes with a ‘stage gate’ comprising a technical review and a specific set of engineering deliverables. The process is intended to facilitate the development of the most appropriate design of GDF, and to support the higher level needs of both the project and the community engagement programmes. The process incorporates elements of good practices derived from other work programmes; including process mapping, issues and requirements management, and progressive design assurance. A set of design principles have been established, and supporting design guidance notes are being produced. In addition a requirements management system is being implemented for the identification, capture, analysis, update, verification, validation and acceptance of requirements for the GDF. This is to ensure that there are traceable links between requirements, and to identify and record the verification/validation of individual requirements. This paper describes the engineering design process and the supporting documents, systems and procedures. The paper addresses the relationship to the geological disposal programme timeline in ‘Geological Disposal - Steps towards implementation’ and, from there, to the UK Government ‘Managing Radioactive Waste Safely’ Programme. It also describes the next steps in the development of the design process, and some of the lessons learnt to date.


Author(s):  
Katie Heininger ◽  
Hong-En Chen ◽  
Kathryn Jablokow ◽  
Scarlett R. Miller

The flow of creative ideas throughout the engineering design process is essential for innovation. However, few studies have examined how individual traits affect problem-solving behaviors in an engineering design setting. Understanding these behaviors will enable us to guide individuals during the idea generation and concept screening phases of the engineering design process and help support the flow of creative ideas through this process. As a first step towards understanding these behaviors, we conducted an exploratory study with 19 undergraduate engineering students to examine the impact of individual traits, using the Preferences for Creativity Scale (PCS) and Kirton’s Adaption-Innovation inventory (KAI), on the creativity of the ideas generated and selected for an engineering design task. The ideas were rated for their creativity, quality, and originality using Amabile’s consensual assessment technique. Our results show that the PCS was able to predict students’ propensity for creative concept screening, accounting for 74% of the variation in the model. Specifically, team centrality and influence and risk tolerance significantly contributed to the model. However, PCS was unable to predict idea generation abilities. On the other hand, cognitive style, as measured by KAI, predicted the generation of creative and original ideas, as well as one’s propensity for quality concept screening, although the effect sizes were small. Our results provide insights into individual factors impacting undergraduate engineering students’ idea generation and selection.


Sign in / Sign up

Export Citation Format

Share Document