AWD Vehicle Dynamics and Energy Efficiency Improvement by Means of Interaxle Driveline and Steering Active Fusion

Author(s):  
Vladimir V. Vantsevich

This paper presents a novel approach to improve both energy efficiency and lateral dynamics of an all-wheel drive (AWD) vehicle by means of active functional/operational fusion of a driveline system, which distributes power between the front and rear driving axles, and a steering system that steers the front driving wheels. The paper starts by presenting the kinematic discrepancy factor, which is a normalized difference of the front and rear theoretical velocities that influences the wheel power distribution, as a mathematical function of the tire rolling radii in the driven mode, the gear ratios of the driveline system, and the steering angle of the front wheels. Using this function, the gear ratios from the transfer case to the front and rear wheels are determined to optimize vehicle energy efficiency by minimizing the kinematic discrepancy at the vehicle’s straight line motion and on a curve. It is also analytically shown that the wheel power distribution leads to the variation of the circumferential force of the front wheels that significantly influences the magnitude and direction of the front wheel lateral force. Thus, the paper introduced the wheel power distribution between the driving axles as an instrument for controlling oversteer-understeer transition of a vehicle, i.e., controlling vehicle lateral dynamics. Finally, the steering angle of the front wheels is considered and analyzed as an input of an active steering system to control the vehicle oversteer-understeer process in combination with the effect of the steering angle on the kinematic discrepancy factor. Longitudinal velocity control is added to constrain the lateral acceleration. Thus, the functional fusion of the active steering and driveline systems for enhancing both AWD vehicle energy efficiency and dynamics is introduced for the first time.

2020 ◽  
Vol 10 (12) ◽  
pp. 4407
Author(s):  
Hyunmoo Hur ◽  
Yujeong Shin ◽  
Dahoon Ahn

In this paper, prior to the commercialization of a developed active steering bogie, we want to analyze steering performance experimentally according to steering angle level with the aim of obtaining steering performance data to derive practical design specifications for a steering system. In other words, the maximum steering performance can be obtained by controlling the steering angle at the 100% level of the target steering angle, but it is necessary to establish the practical control range in consideration of the steering system cost increase, size increase, and consumer steering performance requirements and commercialize. The steering control test using the active steering bogie was conducted in the section of the steep curve with a radius of curvature of R300, and steering performance such as bogie angle, wheel lateral force, and derailment coefficient were analyzed according to the steering angle level. As the steering angle level increased, the bogie indicated that it was aligned with the radial steering position, and steering performance such as wheel lateral force and derailment coefficient was improved. The steering control at 100% level of the target steering angle can achieve the highest performance of 83.6% reduction in wheel lateral force, but it can be reduced to about one-half of the conventional bogie at 25% level control and about one-third at 50% level. Considering cost rise by adopting the active steering system, this result can be used as a very important design indicator to compromise steering performance and cost rise issues in the design stage of the steering system from a viewpoint of commercialization. Therefore, it is expected that the results of the steering performance experiment according to the steering angle level in this paper will be used as very useful data for commercialization.


Lámpsakos ◽  
2012 ◽  
pp. 31
Author(s):  
Henry Borrero-Guerrero ◽  
Rafael Bueno-Sampaio ◽  
Marcelo Becker

This paper presents the preliminary studies of the control strategy based in fuzzy logic, projected for the steering system of AGRIBOT project that consist of a wheeled autonomous mobile robotic in real scale endowed with four independent steering and driven wheels (4WSD). In this work we present a preliminary fuzzy controller design applied to front steering angle, using a multivariable plant which incorporates simplified linear model of lateral dynamics of a vehicle whose input are linear combination of rear and front steering angles. The fuzzy control strategy was decided because provides flexible way to deploy with embedded systems. Simulations are used to illustrate the designed controller performance. We use Ackerman geometry to trace front steering angle that allows the vehicle to perform correctly a given maneuver preserving a minimum level of stability and maneuverability. The goal is to establish a relationship between steering input commands and the control commands to the actuators so that it is possible to adjust the attitude of the actuators over the movement axis, as the trajectory change.


Author(s):  
Hongyu Zheng ◽  
Shuo Yang

The steering trapezoid designed according to the Ackermann steering geometry potentially causes excessive tire wear and affects the steering performance due to the large tire deformation resulting from large lateral acceleration. To address these problems, this article introduces a design method for a race car steering system that considers the tire side slip angles to optimize the target steering angle relation. First, a racing path was planned by genetic algorithm according to the given race track and race car driver characteristics. Next, the objective function of the ideal steering angle relation was constructed by introducing the Ackermann correction coefficient and establishing the modified Ackermann steering geometry model, considering the tire side slip angle. Then, a data acquisition experiment was designed, and the Ackermann correction coefficient was identified by the proposed simulation algorithm. Finally, the coincidence degree of wheel steering centers was defined as the evaluation index, which can be used to describe and evaluate the performance of the coordination for wheels’ movement. Simulation results show that the design method of the steering system effectively improves the handling stability of the race car and reduces the tire leaning-grind.


2011 ◽  
Vol 130-134 ◽  
pp. 295-299 ◽  
Author(s):  
Huan Tao Zeng ◽  
Hui Zhang ◽  
Hong Jun Wu ◽  
Zhi Yu

Steering angle features prominently in accident and driver behavior analysis or other applications, but can hardly be recorded in most monitoring devices such as vehicle traveling data recorder. According to vehicle kinematics model, this paper proposes a solution for steering angle determining based on longitudinal velocity and lateral acceleration signals. Simulation and experiments have been conducted to prove the method feasibility and reliability. Furthermore, trajectory reconstruction is demonstrated as one of the many applications of the steering angle estimation.


Author(s):  
Maliheh Sadeghi Kati ◽  
Jonas Fredriksson ◽  
Bengt Jacobson ◽  
Leo Laine

This paper proposes a gain-scheduled controller synthesis for improving the lateral performance and stability of articulated heavy vehicles by active steering of the selected towed vehicle units. The longitudinal velocity is on-line measurable, and it is thus treated as a scheduling parameter in the gain-scheduled controller synthesis. The lateral performance of four articulated heavy vehicles, including existing Nordic heavy vehicles and prospective longer articulated heavy vehicles, are investigated with and without active steering and compared with a commonly used conventional tractor–semitrailer. The control problem is formulated as an [Formula: see text] static output feedback, which uses only information from articulation angles between the steered vehicle unit and the vehicle unit in front of it. The solution of the problem is obtained within the linear matrix inequality framework, while guaranteeing [Formula: see text] performance objectives. Effectiveness of the designed controller is verified through numerical simulations performed on high-fidelity vehicle models. The results confirm a significant reduction in yaw rate rearward amplification, lateral acceleration rearward amplification, and high-speed transient off-tracking, thereby improving the lateral stability and performance of all studied heavy vehicles at high speeds.


Author(s):  
Hyunmoo Hur ◽  
Yujeong Shin ◽  
Dahoon Ahn

The steering performance according to the steering angle control was tested by using the active steering bogie developed to reduce excessive wheels and rail wear and noise generated when the railway vehicle run in a curved section. As a result of the test of increasing the steering angle in accordance with the target steering angle in the 300m radius of curvature, the bogie is gradually aligned in the radial steering position, and when the control is carried out to 100% of the target steering angle, the bogie angles of the front and rear bogies appeared almost the same. As the steering angle increased, wheel lateral force and derailment coefficient also decreased. Therefore, the validity of the radial steering position control method applied in this paper was confirmed experimentally. This test results will be used for future research on active steering bogie commercialization.


2020 ◽  
Vol 68 (10) ◽  
pp. 880-892
Author(s):  
Youguo He ◽  
Xing Gong ◽  
Chaochun Yuan ◽  
Jie Shen ◽  
Yingkui Du

AbstractThis paper proposes a lateral lane change obstacle avoidance constraint control simulation algorithm based on the driving behavior recognition of the preceding vehicles in adjacent lanes. Firstly, the driving behavior of the preceding vehicles is recognized based on the Hidden Markov Model, this research uses longitudinal velocity, lateral displacement and lateral velocity as the optimal observation signals to recognize the driving behaviors including lane-keeping, left-lane-changing or right-lane-changing; Secondly, through the simulation of the dangerous cutting-in behavior of the preceding vehicles in adjacent lanes, this paper calculates the ideal front wheel steering angle according to the designed lateral acceleration in the process of obstacle avoidance, designs the vehicle lateral motion controller by combining the backstepping and Dynamic Surface Control, and the safety boundary of the lateral motion is constrained based on the Barrier Lyapunov Function; Finally, simulation model is built, and the simulation results show that the designed controller has good performance. This active safety technology effectively reduces the impact on the autonomous vehicle safety when the preceding vehicle suddenly cuts into the lane.


Author(s):  
Dariusz Horla ◽  
Mahmoud Hamandi ◽  
Wojciech Giernacki ◽  
Antonio Franchi

Author(s):  
Hui Jing ◽  
Rongrong Wang ◽  
Cong Li ◽  
Jinxiang Wang

This article investigates the differential steering-based schema to control the lateral and rollover motions of the in-wheel motor-driven electric vehicles. Generated from the different torque of the front two wheels, the differential steering control schema will be activated to function the driver’s request when the regular steering system is in failure, thus avoiding dangerous consequences for in-wheel motor electric vehicles. On the contrary, when the vehicle is approaching rollover, the torque difference between the front two wheels will be decreased rapidly, resulting in failure of differential steering. Then, the vehicle rollover characteristic is also considered in the control system to enhance the efficiency of the differential steering. In addition, to handle the low cost measurement problem of the reference of front wheel steering angle and the lateral velocity, an [Formula: see text] observer-based control schema is presented to regulate the vehicle stability and handling performance, simultaneously. Finally, the simulation is performed based on the CarSim–Simulink platform, and the results validate the effectiveness of the proposed control schema.


Sign in / Sign up

Export Citation Format

Share Document