High Efficiency Electromagnetic Energy Harvester for Railroad Application

Author(s):  
John Wang ◽  
Teng Lin ◽  
Lei Zuo

A mechanical motion rectifier (MMR) based energy harvester is designed to harness the vibrational power from railroad track deflections due to passing trains. Whereas typical existing vibration energy harvester technologies are built for low power applications of milliwatts range, the proposed harvester will be designed for higher power applications such as major track-side equipment. This includes warning signals, switches, and health monitoring systems, which typically require a power supply of 10–100 Watts. To achieve this goal we implement the MMR, a newly patented motion conversion mechanism which efficiently transforms irregular pulse-like bidirectional linear vibration into regulated unidirectional rotational motion. The single-shaft MMR design improves previously developed motion conversion technologies, increasing energy harvester efficiency and power harvesting potential. Features of the MMR include bidirectional to unidirectional motion conversion and flywheel speed regulation. Its advantages include improved reliability, efficiency, and steadier output power. Harvester prototype testing results illustrate features and benefits of the MMR based harvester, showing reduction of continual system loading, regulation of generator speed, and capability for continuous DC power generation.

Wind vibration based energy harvester using piezoelectric material has been of great concern to researchers for a long time for low power generation and applications. In this paper, wind generated vibrations are used to develop electromechanical model of piezoelectric vibration energy harvester to generate electrical output using MATLAB simulink and comparision has been drawn between an electromechanical model of piezoelectric harvester interfaced with P&O MPPT based electrical model and without it. It has been found that overall model with MPPT provides high output with high efficiency


2016 ◽  
Vol 27 (20) ◽  
pp. 2810-2826 ◽  
Author(s):  
Ronan Frizzell ◽  
Gerard Kelly ◽  
Francesco Cottone ◽  
Elisabetta Boco ◽  
Valeria Nico ◽  
...  

Vibration energy harvesting extracts energy from the environment and can mitigate reliance on battery technology in wireless sensor networks. This article presents the nonlinear responses of two multi-mass vibration energy harvesters that employ a velocity amplification effect. This amplification is achieved by momentum transfer from larger to smaller masses following impact between masses. Two systems are presented that show the evolution of multi-mass vibration energy harvester designs: (1) a simplified prototype that effectively demonstrates the basic principles of the approach and (2) an enhanced design that achieves higher power densities and a wider frequency response. Various configurations are investigated to better understand the nonlinear dynamics and how best to realise future velocity-amplified vibration energy harvesters. The frequency responses of the multi-mass harvesters show that these devices have the potential to reduce risks associated with deploying vibration energy harvester devices in wireless sensor network applications; the wide frequency response reduces the need to re-tune the harvesters following frequency variations of the source vibrations.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Christophe Delebarre ◽  
Thomas Sainthuile ◽  
Sébastien Grondel ◽  
Christophe Paget

The aim of this work is to show that classical Structural Health Monitoring ultrasonic sensors may provide some power harvesting capabilities from a wide variety of vibration sources. In other words, the authors developed an integrated piezoelectric energy harvesting sensor capable of operating a dual mode, that is, carrying out vibration power harvesting and Structural Health Monitoring. First, vibrations signals of an A380 aircraft recorded during different phases of flight are presented to show the need of a wideband piezoelectric energy harvester. Then, the voltage response of a piezoelectric power harvester bonded onto an aluminium cantilever plate and excited by an electromechanical shaker is measured. A finite element model of the energy harvester system is also presented. This model provides the voltage response of the harvester due to a mechanical excitation of the host structure and allows a better understanding of the energy harvesting process. In many cases, a good agreement with the experimental results is obtained. A power measurement also showed the ability of piezoelectric SHM sensors to harvest power over an extended frequency range present in spectra collected in aircrafts. This result could lead to numerous applications even though this kind of power harvester sensor has been initially designed to operate onboard aircrafts.


Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 327
Author(s):  
Aicheng Zou ◽  
Zhong Liu ◽  
Xingguo Han

Existing piezoelectric vibration energy harvesting circuits require auxiliary power for the switch control module and are difficult to adapt to broadband piezoelectric vibration energy harvesters. This paper proposes a self-powered and low-power enhanced double synchronized switch harvesting (EDSSH) circuit. The proposed circuit consists of a low-power follow-up switch control circuit, reverse feedback blocking-up circuit, synchronous electric charge extraction circuit and buck-boost circuit. The EDSSH circuit can automatically adapt to the sinusoidal voltage signal with the frequency of 1 to 312.5 Hz that is output by the piezoelectric vibration energy harvester. The switch control circuit of the EDSSH circuit works intermittently for a very short time near the power extreme point and consumes a low amount of electric energy. The reverse feedback blocking-up circuit of the EDSSH circuit can keep the transmission efficiency at the optimal value. By using a charging capacitor of 1 mF, the charging efficiency of the proposed EDSSH circuit is 1.51 times that of the DSSH circuit.


2017 ◽  
Vol 6 (4) ◽  
pp. 22-26
Author(s):  
S. Datta ◽  
K. Kar ◽  
M. Pal ◽  
R. Ghatak

Energy can be conserved by reusing what has already been spent. Such type of energy is readily available in the electromagnetic form (ambient RF energy). Signals broadcasted from AM, FM, cellular base stations and millions of other wireless devices can be converted to DC power. However, the main roadblock in this field of research is the level of power that ambient radiation carries. High efficiency antennas and rectifier circuits are required to harvest a fair amount of energy that can be used by low power devices. This paper presents the design of a novel multiband fractal antenna and a rectifier circuit that can be used to harvest ambient RF energy.


2015 ◽  
Author(s):  
◽  
Jianxiong Zhu

Unwanted vibrations are all around us in our daily life. These vibrations can effectively be converted into electrical power through capacitive device. Even though the amount of power generated is small ([mu]W), it is still sufficient to drive certain devices, such as devices in the field of Micro Electro Mechanical System (MEMS). We call these functional devices "self-powered devices". This dissertation describes design, modeling, analysis, dynamic simulation and experimental testing of MEMS variable capacitors which are used for power harvesting based on external vibration. More specifically, it includes the electrostatic force and the forces provided by the stopper designed to prevent direct impact between capacitive plates. To more accurately reflect the status of power harvesting, rocking instability is discussed as well. However, the onset of rocking instability leads to more complicated dynamic phenomena. This dissertation not only introduces equation theory derivation and dynamic behaviors of the MEMS capacitive harvester, but also presents a comparison of power harvesting at broad frequencies and different amplitudes. These conclusions are helpful for the design of high efficiency "self-powered" MEMS capacitive power harvester.


Sign in / Sign up

Export Citation Format

Share Document