Novel Monitoring Method of Gear Meshing Using a High Response Infrared Thermography

Author(s):  
Kodai Niwa ◽  
Raphael Pihet ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

The hypoid gear used in automobile differential has a complex shape, and the estimation of the contact conditions is difficult. Therefore we devised a method of analysis of the tooth contact conditions using a high reply thermography as a non-contact analysis method by analyzing the temperature distribution during meshing between the pinion and the gear. We decided to perform a high-speed photography used by thermography and defined the extraction line in a shot thermal image to extract the temperature data from the thermal images. The temperature distribution provided by extraction line shows a different temperature rising shape and the position of the tooth surface obtained using the extraction line moves up and down during the cycle of each tooth. This cyclic nature is in good accordance with the whirling of the shaft caused by the geometry error of the shaft center which was thought to have an influence on the contact conditions. In addition, as the extraction line was defined on the thermal image, it does not follow the movement of the gear, but the movement of the temperature distribution obtained using the extraction line matches the displacement of the gear by the whirling.

Author(s):  
Mitsuhiko Suzuki ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Hypoid gears, used in automobile differentials, have a complex shape; thus, it is difficult to estimate tooth contact conditions. Therefore, a non-contact method of analysis is proposed for determining tooth contact conditions by using high-response thermography to analyze temperature distribution during meshing between the pinion and the gear. High-speed photography was performed using thermography and an extraction line was defined in the obtained thermal images to extract temperature data from them. Furthermore, we constructed a novel model to predict tooth surface temperature distribution during tooth meshing based on a thermal network model that represents the thermal conductivity of an object by a simple RC circuit. In this report, by comparing the temperature changes obtained from the thermal images with the calculated results, we identify the thermal properties of a material from the thermal images, and discuss the effects of parameters such as heat capacity and thermal resistance. The comparison shows that infrared tooth surface imagery is effective in estimating hypoid gear tooth meshing. That is, by using infrared image and a thermal network model, heat conduction in a gear can be considered. It was confirmed that it is possible to predict temperature rise on tooth surfaces due to gear meshing.


2020 ◽  
Vol 13 (3) ◽  
pp. 115-129
Author(s):  
Shin’ichi Aratani

High speed photography using the Cranz-Schardin camera was performed to study the crack divergence and divergence angle in thermally tempered glass. A tempered 3.5 mm thick glass plate was used as a specimen. It was shown that two types of bifurcation and branching existed as the crack divergence. The divergence angle was smaller than the value calculated from the principle of optimal design and showed an acute angle.


Author(s):  
M. Palaniappan ◽  
V. Ng ◽  
R. Heiderhoff ◽  
J.C.H. Phang ◽  
G.B.M. Fiege ◽  
...  

Abstract Light emission and heat generation of Si devices have become important in understanding physical phenomena in device degradation and breakdown mechanisms. This paper correlates the photon emission with the temperature distribution of a short channel nMOSFET. Investigations have been carried out to localize and characterize the hot spots using a spectroscopic photon emission microscope and a scanning thermal microscope. Frontside investigations have been carried out and are compared and discussed with backside investigations. A method has been developed to register the backside thermal image with the backside illuminated image.


2016 ◽  
Vol 11 (1) ◽  
pp. 30-37 ◽  
Author(s):  
A.A. Rakhimov ◽  
A.T. Akhmetov

The paper presents results of hydrodynamic and rheological studies of the inverse water hydrocarbon emulsions. The success of the application of invert emulsions in the petroleum industry due, along with the high viscosity of the emulsion, greatly exceeding the viscosity of the carrier phase, the dynamic blocking effect, which consists in the fact that the rate of flow of emulsions in capillary structures and cracks falls with time to 3-4 orders, despite the permanent pressure drop. The reported study shows an increase in viscosity with increasing concentration or dispersion of emulsion. The increase in dispersion of w/o emulsion leads to an acceleration of the onset of dynamic blocking. The use of microfluidic devices, is made by soft photolithography, along with high-speed photography (10,000 frames/s), allowed us to see in the blocking condition the deformation of the microdroplets of water in inverse emulsion prepared from simple chemical compounds.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 559
Author(s):  
Lakshminath Kundanati ◽  
Prashant Das ◽  
Nicola M. Pugno

Aquatic predatory insects, like the nymphs of a dragonfly, use rapid movements to catch their prey and it presents challenges in terms of movements due to drag forces. Dragonfly nymphs are known to be voracious predators with structures and movements that are yet to be fully understood. Thus, we examine two main mouthparts of the dragonfly nymph (Libellulidae: Insecta: Odonata) that are used in prey capturing and cutting the prey. To observe and analyze the preying mechanism under water, we used high-speed photography and, electron microscopy. The morphological details suggest that the prey-capturing labium is a complex grasping mechanism with additional sensory organs that serve some functionality. The time taken for the protraction and retraction of labium during prey capture was estimated to be 187 ± 54 ms, suggesting that these nymphs have a rapid prey mechanism. The Young’s modulus and hardness of the mandibles were estimated to be 9.1 ± 1.9 GPa and 0.85 ± 0.13 GPa, respectively. Such mechanical properties of the mandibles make them hard tools that can cut into the exoskeleton of the prey and also resistant to wear. Thus, studying such mechanisms with their sensory capabilities provides a unique opportunity to design and develop bioinspired underwater deployable mechanisms.


Sign in / Sign up

Export Citation Format

Share Document