Simulation and Analysis of a Fractionally Controlled Active Suspension System Using Quarter Car Model

Author(s):  
Duval A. Johnson

This study is conducted to provide preliminary data that fractional calculus can be used to optimize active automobile suspension systems. Most automobile suspension systems perform their duties using a single spring with fixed damping rates and are referred to as being a passive system. An active suspension system has the ability to directly control force actuators in the suspension system or by varying the damping rates within the shock absorbers to provide control over body position, velocity, and acceleration. A mathematical model for a quarter car suspension system has been obtained to compare passive, integer, and fractionally controlled active suspension systems and show that fractional calculus may be used to improve the performance of any active system.

Author(s):  
E.M Allam ◽  
M.A.A Emam ◽  
Eid.S Mohamed

This paper presents the effect of the suspension working space, body displacement, body acceleration and wheel displacement for the non-controlled suspension system (passive system) and the controlled suspension system of a quarter car model (semi-active system), and comparison between them. The quarter car passive and semi-active suspension systems are modelled using Simulink. Proportional Integral Derivative controllers are incorporated in the design scheme of semi-active models. In the experimental work, the influence of switchable damper in a suspension system is compared with the passive and semi-active suspension systems.


Author(s):  
M.K. Shehan ◽  
B.B. Sahari ◽  
N.A.B.A. Jalil ◽  
T.S. Hong ◽  
A.B. Asarry

This paper handles the synergy between the design and control optimization problem for an active car suspension system consisting both active and passive components. The dynamics of the suspension system are modeled utilizing a three degree of freedom (3DOF), linear with time invariant quarter car model with capability to capture the impact of the passive stiffness on suspension deflection depending up on the spectral density of road disturbances. Direct transcription, a strategy which guarantees system optimality, is presented and utilized to find the optimal design of the suspension system. The active system dynamics were analyzed with modified level of control force to examine how dynamic system should be designed accordingly when the active control force is introduced.


Author(s):  
Chi Nguyen Van

This paper presents the active suspension system (ASS) control method using the adaptive cascade control scheme. The control scheme is implemented by two control loops, the inner control loop and outer control loop are designed respectively. The inner control loop uses the pole assignment method in order to move the poles of the original system to desired poles respect to the required performance of the suspension system. To design the controller in the inner loop, the model without the noise caused by the road profile and velocity of the car is used. The outer control loop then designed with an adaptive mechanism calculates the active control force to compensate for the vibrations caused by the road profile and velocity of the car. The control force is determined by the error between states of the reference model and states of suspension systems, the reference model is the model of closed-loop with inner control loop without the noise. The simulation results implemented by using the practice date of the road profile show that the capability of oscillation decrease for ASS is quite efficient


Author(s):  
P.P.D. Rao ◽  
S. Palli ◽  
R.C. Sharma

Conventional vehicle suspension systems, which are passive in nature consists of springs with constant stiffness and dampers with constant damping coefficient. These suspension systems cannot meet the characteristics such as ride comfort, road handing and suspension deflection during abnormal road conditions simultaneously. Active and semi-active suspension systems are the solutions to achieve the desired suspension characteristics. Since, active system is bulky and requires high energy for working, a semi-active suspension system is considered in the present work to analyze vehicle traversing over various road profiles for ride comfort. Mathematical model of a 7 DoF passenger car is formulated using Newton’s method. A semi-active suspension system with skyhook linear control strategy avoids the road excitations at resonant frequencies by shifting the natural frequencies of the model by varying damping coefficients based on the vehicle response for different road conditions where the excitations could be harmonic, transient and random. Modal analysis is carried out to identify the un-damped natural frequencies and mode shapes for different values of damping. The above analyses are carried out through analytical and numerical methods using MATLAB and ANSYS software respectively and the results obtained from both are in good agreement.


Author(s):  
D. J. Purdy ◽  
D. N. Bulman

The well-established quarter car representation is used to investigate the design of an active suspension system for a racing car. The work presented is from both a practical and theoretical study. The experimental open-loop and passive responses of the suspension system are used to validate the model and estimate the level of damping within the system. A cascade control structure is used, consisting of an inner body acceleration loop and an outer ride height loop. Comparisons are made between the experimental results and those predicted by the theory. During the 1980s and early 1990s a number of Formula 1 teams developed active suspension systems to improve the performance of cars. Little detail was published about these systems because of the highly competitive nature of the application. Some of these systems were very sophisticated and successful. Because of this, speed increased considerably and because of the costs involved, the difference in performance between the lower and higher funded teams became unacceptable. For this reason, the governing body of motor sport decided to ban active suspensions from the end of the 1993 racing season. Both authors of this paper were involved with different racing teams at that time, and this paper is an introduction to the very basic philosophy behind a typical active system that was employed on a Formula 1 car.


2015 ◽  
Vol 11 (2) ◽  
pp. 151-158 ◽  
Author(s):  
Wissam Al-Mutar ◽  
Turki Abdalla

The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compared with passive suspension system model and input road profile. Simulation results show good performance for the designed controller.


Author(s):  
N.M. Ghazaly ◽  
A.S Ahmed ◽  
A.S Ali ◽  
G.T Abd El- Jaber

In recent years, the use of active control mechanisms in active suspension systems has attracted considerable attention. The main objective of this research is to develop a mathematical model of an active suspension system that is subjected to excitation from different road profiles and control it using H∞ technique for a quarter car model to improve the ride comfort and road handling. Comparison between passive and active suspension systems is performed using step, sinusoidal and random road profiles. The performance of the H∞ controller is compared with the passive suspension system. It is found that the car body acceleration, suspension deflection and tyre deflection using active suspension system with H∞ technique is better than the passive suspension system.


2016 ◽  
Vol 24 (5) ◽  
pp. 956-974 ◽  
Author(s):  
Jonathan Rodriguez ◽  
Paul Cranga ◽  
Simon Chesne ◽  
Luc Gaudiller

This paper considers experiments on the control of a helicopter gearbox hybrid electromagnetic suspension. As the new generation of helicopters includes variable engine revolutions per minute (RPMs) during flight, it becomes relevant to add active control to their suspension systems. Most active system performance derives directly from the controller construction, its optimization to the system controlled, and the disturbances expected. An investigation on a feedback and feedforward filtered-x least mean square (FXLMS) control applied to an active DAVI suspension has been made to optimize it in terms of narrow-band disturbance rejection. In this paper, we demonstrate the efficiency of a new hybrid active suspension by combining the advantages of two different approaches in vibration control: resonant absorbers and active suspensions. Here, a hybrid active suspension based on the passive vibration filter called DAVI is developed. The objective of this paper is to prove the relevancy of coupling a resonant vibration absorber with a control actuator in order to create an active suspension with larger bandwidth efficiency and low energy consumption. The simulations and experimentation achieved during this suspension system development support this hypothesis and illustrate the efficiency and low energy cost of this smart combination.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Sathish Kumar Palaniappan ◽  
Rajasekar Rathanasamy ◽  
Sivasenapathy Chellamuthu ◽  
Samir Kumar Pal

It is well-known that suspension systems plays a major role in automotive technology. Most of the today’s vehicle applies a passive suspension systems consisting of a spring and damper. The design of automotive suspension have been a compromise between passenger comfort, suspension travel and road holding ability. This work aims in reducing the suspension travel alone by developing a quarter car model suspension for a passenger car to improve its performance by introducing shape memory alloy spring (Nitinol) instead of traditional spring. A two way shape memory alloy spring possesses two different stiffness in its two different phases (martensite and austenite). In this study, road profile is considered as a simple harmonic profile and vibration analysis of aminiature quarter car model suspension system has been carried out experimentally. Using theoretical method, the displacement of the sprung mass is also studied and discussed. The vibration analysis have been carried out for the suspension system at both phases of the spring and the results gives a significant improvement in reducing the displacement of sprung mass for various excitation frequencies.


Author(s):  
D.V.A.R. Sastry ◽  
K.V. Ramana ◽  
N.M. Rao ◽  
P. Pruthvi ◽  
D.U.V. Santhosh

Magnetorheological (MR) dampers are evolving as one of the most promising devices for semi-active vibration control of various dynamic systems. In this paper, the suspension system of a car using MR damper is analysed for 2DOF quarter car and 4DOF half car models and then compared with corresponding suspension system using passive damper for ride comfort and handling. Magnetorheological damper is fabricated using a MR fluid of Carbonyl iron powder and Silicone oil added with additive. Experiments are conducted to establish the behaviour of the MR damper and are used to validate Spencer model for MR damper. Further, using the validated Spencer model of MR damper, the quarter car and half car models of Vehicle Suspension system are simulated by implementing a semi-active suspension system for analysing the resulting displacement and acceleration in the car body. The ride comfort and vehicle handling performance of each specific vehicle model with passive suspension system are compared with corresponding semi-active suspension system. The simulation and analysis are carried out using MATLAB/SIMULINK.


Sign in / Sign up

Export Citation Format

Share Document