Parametric Study of the Effect of Hinged Connectors on the Behavior of Origami-Inspired Structures Comprised of Sandwich Panels

Author(s):  
Zach C. Ballard ◽  
Ashley P. Thrall ◽  
Brian J. Smith

Origami can be a source of inspiration for rapidly deployable, rigid wall shelters. Folding panels comprised of sandwich panels will result in a lightweight, transportable design. The design of connections between panels is critical to the overall structural performance, but can pose a major design challenge. This paper investigates the implementation of hinges for connections between panels. A single panel, comprised of fiber-reinforced polymer faces and a foam core, is restrained by aluminum hinged connectors and subjected to a uniform load. An exhaustive parametric study is performed using a numerical model previously validated by experimental data. The numerical study will facilitate better understanding of the impact of the 1) number, 2) size, and 3) relative placement of connectors on panel behavior, with data comparisons focusing on the longitudinal surface strains and displacements of the panel. This investigation culminates in a set of guidelines for hinged connectors in origami-inspired structures.

2019 ◽  
Vol 303 ◽  
pp. 01004
Author(s):  
Xiaohong Yang ◽  
Yu Jiang ◽  
Huyue Sun ◽  
Zhenghua Sun

This study investigated the structural performance of precast concrete insulated sandwich panels with cruciform cross section glass fiber-reinforced polymer (GFRP) connectors, based on tensile and shear tests. 5 tensile specimens and 4 shear specimens were fabricated and tested. The load-displacement relation and failure mode of the specimens were analyzed. The results revealed that the average ultimate tension load of the tested specimens with single GFRP connector was 13.14kN with concrete splitting or concrete partial cone failure. For the shear specimens, the average ultimate shear load was 14.83kN with rupture failure of GFRP connector. Furthermore, durability of sandwich panels was investigated, by fabricating and testing 48 tensile specimens with GFRP connectors immersed in tension load had sufficient safety in different design situations.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110094
Author(s):  
Ibrahim Elnasri ◽  
Han Zhao

In this study, we numerically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effects of quasi-static loading, landing rates, and boundary conditions on the perforation resistance of the studied graded core sandwich panels were discussed. The simulation results showed that the piercing force–displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with unclumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions.


2017 ◽  
Vol 8 (2) ◽  
pp. 304-320 ◽  
Author(s):  
Mohamed MA Abdel-Kader ◽  
Ahmed Fouda

In this article, the response of 12 plain concrete specimens to an impact of hard projectiles was examined in an experimental study. The tests were planned with an aim to observe the influence of using glass fiber reinforced polymer sheets to strengthen plain concrete panels on the performance of concrete under this type of loading. The main findings show that strengthening plain concrete panels with glass fiber reinforced polymer sheets showed satisfactory performance under the impact load; the glass fiber reinforced polymer sheets can be used for strengthening or upgrading concrete structures to improve their resistance against impact. Also, the location of the glass fiber reinforced polymer sheet affects the front and rear face craters.


2014 ◽  
Vol 501-504 ◽  
pp. 578-582
Author(s):  
Liang Hsu ◽  
Ming Long Hu ◽  
Jun Zhi Zhang

Considering secondary load, simulate the axial compression process of reinforced concrete square columns strengthened with igneous rock fiber reinforced polymer with Abaqus. Make a comparison between the simulation result and experimental result. The finite-element model can simulate the experiment preferably. And the impact of lagged strain is very obvious.


2003 ◽  
Vol 1845 (1) ◽  
pp. 191-199 ◽  
Author(s):  
Ondrej Kalny ◽  
Robert J. Peterman ◽  
Guillermo Ramirez ◽  
C. S. Cai ◽  
Dave Meggers

Stiffness and ultimate load-carrying capacities of glass fiber-reinforced polymer honeycomb sandwich panels used in bridge applications were evaluated. Eleven full-scale panels with cross-section depths ranging from 6 to 31.5 in. (152 to 800 mm) have been tested to date. The effect of width-to-depth ratio on unit stiffness was found to be insignificant for panels with a width-to-depth ratio between 1 and 5. The effect of this ratio on the ultimate flexural capacity is uncertain because of the erratic nature of core-face bond failures. A simple analytical formula for bending and shear stiffness, based on material properties and geometry of transformed sections, was found to predict service-load deflections within 15% accuracy. Although some factors influencing the ultimate load-carrying capacity were clearly identified in this study, a reliable analytical prediction of the ultimate flexural capacity was not attained. This is because failures occur in the bond material between the outer faces and core, and there are significant variations in bond properties at this point due to the wet lay-up process, even for theoretically identical specimens. The use of external wrap layers may be used to shift the ultimate point of failure from the bond (resin) material to the glass fibers. Wrap serves to strengthen the relatively weak core–face interface and is believed to bring more consistency in determining the ultimate load-carrying capacity.


2018 ◽  
Vol 28 (3) ◽  
pp. 90-102
Author(s):  
Ahmed Khene ◽  
Habib Abdelhak Mesbah ◽  
Nasr-Eddine Chikh

Abstract In this study, we have chosen to use a new technique of reinforcement with composite materials, namely the near surface mounted technique (NSM). The NSM technique consists in inserting strips of carbon fiber reinforced polymer (CFRP) laminate into slits made beforehand at the level of the concrete coating of the elements to be reinforced. A numerical investigation was conducted on rectangular reinforced concrete beams reinforced with NSM-CFRP using the ATENA finite element code. A parametric study was also carried out in this research. The numerical results were compared with the experimental results of the beams tested by other researchers with the same reinforcement configurations. Overall, numerical behavior laws are rather well-suited to those obtained experimentally and the parametric study has also yielded interesting results.


2019 ◽  
Vol 271 ◽  
pp. 01012
Author(s):  
Diogo Zignago ◽  
Michele Barbato

Confinement of reinforced concrete (RC) piers generally has a beneficial effect on both the compressive strength and the ductility of the confined member. Thus, externally-bonded fiber-reinforced polymer (FRP) wrapping is often used as a retrofit technique for bridge piers when additional compressive strength is needed. This study employs finite element analysis and a recently developed FRP-and-steel confined concrete model to investigate the influence of internal steel confinement on the response of circular RC columns confined with FRP and subject to concentric axial load. This new model leads to more accurate estimates of the response of these columns, what is particularly relevant for piers in short span bridges that are subjected mainly to vertical loads, for which it could lead to a more efficient and economical piers’ retrofit, as well as a more accurate and less conservative bridge rating. A parametric study is conducted to examine the importance of some key parameters in the design of such columns.


Author(s):  
Benoit Stalin ◽  
Dongyang Yang ◽  
Yong Xia ◽  
Qing Zhou

This article investigates the influence of finite element model features on Fiber Reinforced Polymer (FRP) crushing simulation results. The study focuses on two composite material tube models using single shell modeling approach. The chosen material model is MAT58 (*MAT_LAMINATED_COMPOSITE_FABRIC) from the commercial finite element analysis software LS-Dyna. The baseline models geometry and material parameters come from a model calibration conducted for lightweight vehicle investigation. Five parameters are investigated. The mesh size and the number of integration point (NIP) are generic and ERODS, TSIZE and SOFT are the non-physical parameters of MAT58. This analysis aims at discuss the influence of these parameters on the simulation results focusing on the initial force peak and the average crush load, regarding results realism and instabilities such as large elements deformation and abnormal peak values. Also, the impact of the number of CPUs involved in the simulation calculation is presented. Recommendations are given to set the mesh size and the NIP. TSIZE value should be selected regarding the simulation time step. On the other hand, ERODS has to be adjusted manually. Both are determinant for simulation robustness. Further studies are proposed to find out the reasons of large element deformation.


Sign in / Sign up

Export Citation Format

Share Document