Modeling and Simulation of Vehicle Behavior for Design and Tuning of Electronic Differential for Formula Student Vehicle

Author(s):  
Maithili Patel ◽  
Manthan Mahajan

A racing vehicle requires to be designed for optimum performance, stability and maneuverability considering all situations like straight line acceleration and high speed cornering. The car is driven close to its tractive limits and a control system becomes inevitable to manifest utmost performance of the car. In this paper, the focus is on design of an electronic differential for a rear wheel driven Formula Student Electric vehicle, with each rear wheel driven by separate motors. The electronic differential (e-diff) is aimed at both straights and corners, which is fulfilled by considering objective parameters, which assist in cornering by improving yaw rate and straights by improving traction. However, in this paper we shall focus on cornering only. The paper looks at various possible control strategies for obtaining desired values of certain parameters and describes in detail implementation of a yaw rate controlled system. A vehicle model is created on MATLAB/Simulink platform to look at changes in vehicle behavior in response to various control strategies. The model consists of vehicle dynamics and driver models developed by the authors. The coupled model simulates the vehicle performance on any given track and provides the variation of required parameters. Iterations are done and the results are used to tune the controller parameters to optimize performance on tight turns and overall lap times at the endurance event at the Formula Student competition.

Author(s):  
Hyunsoo Cha ◽  
Youngjin Hyun ◽  
Kyongsu Yi ◽  
Jaeyong Park

This paper presents an integrated control of in-wheel motor (IWM) and electronic limited slip differential (eLSD) for high-speed cornering performance. The proposed algorithm is designed to improve the handling performance near the limits of handling. The proposed controller consists of a supervisor, upper-level controller, and lower-level controller. First, the supervisor determines a target motion based on the yaw rate reference with a target understeer gradient. The target understeer gradient is devised to improve the lateral stability with in-wheel motor control based on a nonlinear static map. The yaw rate reference is designed based on the target understeer gradient to track the yaw reference with eLSD control. Second, the upper-level controller calculates the desired yaw moments for IWM and eLSD to generate the target motion. Third, the lower-level controller converts the desired yaw moment to the actuator torque commands for IWMs and eLSD. The tire friction limits are estimated based on the tire model and friction circle model to prevent tire saturation by limiting the torque inputs. The proposed algorithm has been investigated via both simulations and vehicle tests. The performance of the integrated control was compared with those of individual control and uncontrolled case in the simulation study. The vehicle tests have been performed using a rear wheel drive vehicle equipped with two front IWMs and eLSD in the rear axle. The vehicle test has been conducted at a racing track to show that the proposed algorithm can improve the lateral stability near the limits of handling.


2010 ◽  
Vol 29-32 ◽  
pp. 1420-1424
Author(s):  
Shu Wen Zhou ◽  
Si Qi Zhang ◽  
Guang Yao Zhao

Since the handling behaviour of car-trailer combination is more complex and less predictable than that of non-articulated vehicles, the drivers may lose control of the vehicle in some hasty steering maneuvers. The kinematics of car-trailer combination has been analyzed with a 3 DOF model. A modified Vehicle Dynamics Control system was designed to improve the lateral stability of the trailer. The dynamics simulation for lateral stability of car-trailer combination has been performed on the multi-body model. The results show that the lateral stability of car-trailer combination, including yaw rate and roll angle has been improved with the modified Vehicle Dynamics Control system.


1990 ◽  
Vol 112 (3) ◽  
pp. 489-495 ◽  
Author(s):  
A. Y. Lee

The high-speed cruising stability of passenger vehicles may be enhanced with stability augmentation systems. These systems would modify the driver’s steering command to the vehicle’s front wheels, and steer the rear wheels according to measured vehicle conditions such as its yaw-rate. In this simulation study, an explicit driver model is used in the design of these stability augmentation systems. For ease of implementation, only low-order controllers are synthesized using parameter optimization. The high-speed, straight-line stability of a passenger vehicle in a cross-wind is simulated to evaluate steering performance with these controllers. Our results show that stability augmented steering has the potential to improve the directional stability of passenger vehicles.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 394 ◽  
Author(s):  
Michele Vignati ◽  
Edoardo Sabbioni ◽  
Federico Cheli

When dealing with electric vehicles, different powertrain layouts can be exploited. Among them, the most interesting one in terms of vehicle lateral dynamics is represented by the one with independent electric motors: two or four electric motors. This allows torque-vectoring control strategies to be applied for increasing vehicle lateral performance and stability. In this paper, a novel control strategy based on torque-vectoring is used to design a drifting control that helps the driver in controlling the vehicle in such a condition. Drift is a particular cornering condition in which high values of sideslip angle are obtained and maintained during the turn. The controller is applied to a rear-wheel drive race car prototype with two independent electric motors on the rear axle. The controller relies only on lateral acceleration, yaw rate, and vehicle speed measurement. This makes it independent from state estimators, which can affect its performance and robustness.


Author(s):  
Jigneshsinh Sindha ◽  
Basab Chakraborty ◽  
Debashish Chakravarty

Small sized three wheeler electric vehicles (EVs) are gaining popularity in many developing countries because of its low cost operation and excellent manoeuvrability. However, usage of such a 3Ws usage is limited to low speed application such as last mile public transport. Vehicles with such configuration are not well accepted for personal mobility. If the safe speed of such a vehicles are improved, such a vehicles can also become viable to personal transport. Active tilt control (ATC) systems are seen as one of the possible solution to improve safe speed of narrow track 3Ws.Literature indicates that many attempts have been made for establishing active tilt control system on 3W vehicles for enhancing stability of ATC vehicles and promising results were obtained. This paper presents simulation based analysis of the ATC 3W electric vehicle. This work is part of full scale experimental prototype development for the narrow track ATC 3W vehicle with one wheel in front configuration. The primarily focus of this work is to address vehicle dynamics and trajectory related issue of the tilting 3Ws. A multi-body model of ATC 3W vehicle using single track lateral dynamic model with nonlinear tire characteristics was prepared in SimMechanics. The lateral dynamic outputs in terms of the trajectory followed by vehicle were compared for the constant steering inputs given to non-tilting vehicle, tilting vehicle with direct tilt control (DTC) system and tilting vehicle with Steering direct tilt control (SDTC) system. Two critical driving scenarios of U-turn and Lane change manoeuvre are analyzed. It is observed from the results that there is certain trade-off in selecting a tilt actuator and controller so as to minimize the jerks in the perceived acceleration due to high gain and minimize the tilt angle error to ensure proper stability improvement. It is also identified that the controller must be tuned to the predictable trajectory control, in addition to the main task of reducing the load transfer across the rear wheel axle. The model presented in the paper is used to understand the performance of DTC and SDTC control strategies during potentially dangerous manoeuvres. The desired path following ability of the vehicle is the main measures considered for the analysis.


2009 ◽  
Vol 16-19 ◽  
pp. 544-548 ◽  
Author(s):  
Shu Wen Zhou ◽  
Hai Shu Chen ◽  
Si Qi Zhang ◽  
Li Xin Guo

Rollover and jack-knifing of tractor semitrailer on high speed obstacle avoidance under emergency are serious threats for motorists. A tractor semitrailer model was built with multi-rigid-body method in this paper. The steering performance of tractor semitrailer has been analyzed, as well as the stability control theory, including yaw rate following, anti-rollover. The dynamics simulation for yaw rate following and anti-rollover has been performed on the dynamic tractor semitrailer. The results show that the vehicle dynamics control proposed in this paper can stabilize the tractor semitrailer, rollover and jack-knifing are prevented and the tractor semitrailer more accurately follows the driver's desired path.


2020 ◽  
Vol 12 (12) ◽  
pp. 168781402098468
Author(s):  
Xianbin Du ◽  
Youqun Zhao ◽  
Yijiang Ma ◽  
Hongxun Fu

The camber and cornering properties of the tire directly affect the handling stability of vehicles, especially in emergencies such as high-speed cornering and obstacle avoidance. The structural and load-bearing mode of non-pneumatic mechanical elastic (ME) wheel determine that the mechanical properties of ME wheel will change when different combinations of hinge length and distribution number are adopted. The camber and cornering properties of ME wheel with different hinge lengths and distributions were studied by combining finite element method (FEM) with neural network theory. A ME wheel back propagation (BP) neural network model was established, and the additional momentum method and adaptive learning rate method were utilized to improve BP algorithm. The learning ability and generalization ability of the network model were verified by comparing the output values with the actual input values. The camber and cornering properties of ME wheel were analyzed when the hinge length and distribution changed. The results showed the variation of lateral force and aligning torque of different wheel structures under the combined conditions, and also provided guidance for the matching of wheel and vehicle performance.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 431
Author(s):  
Junjie Ye ◽  
Hao Sun

In order to study the influence of an integration time step on dynamic calculation of a vehicle-track-bridge under high-speed railway, a vehicle-track-bridge (VTB) coupled model is established. The influence of the integration time step on calculation accuracy and calculation stability under different speeds or different track regularity states is studied. The influence of the track irregularity on the integration time step is further analyzed by using the spectral characteristic of sensitive wavelength. According to the results, the disparity among the effect of the integration time step on the calculation accuracy of the VTB coupled model at different speeds is very small. Higher speed requires a smaller integration time step to keep the calculation results stable. The effect of the integration time step on the calculation stability of the maximum vertical acceleration of each component at different speeds is somewhat different, and the mechanism of the effect of the integration time step on the calculation stability of the vehicle-track-bridge coupled system is that corresponding displacement at the integration time step is different. The calculation deviation of the maximum vertical acceleration of the car body, wheel-sets and bridge under the track short wave irregularity state are greatly increased compared with that without track irregularity. The maximum vertical acceleration of wheel-sets, rails, track slabs and the bridge under the track short wave irregularity state all show a significant declining trend. The larger the vibration frequency is, the smaller the range of integration time step is for dynamic calculation.


Author(s):  
Khaled E. Zaazaa ◽  
Brian Whitten ◽  
Brian Marquis ◽  
Erik Curtis ◽  
Magdy El-Sibaie ◽  
...  

Accurate prediction of railroad vehicle performance requires detailed formulations of wheel-rail contact models. In the past, most dynamic simulation tools used an offline wheel-rail contact element based on look-up tables that are used by the main simulation solver. Nowadays, the use of an online nonlinear three-dimensional wheel-rail contact element is necessary in order to accurately predict the dynamic performance of high speed trains. Recently, the Federal Railroad Administration, Office of Research and Development has sponsored a project to develop a general multibody simulation code that uses an online nonlinear three-dimensional wheel-rail contact element to predict the contact forces between wheel and rail. In this paper, several nonlinear wheel-rail contact formulations are presented, each using the online three-dimensional approach. The methods presented are divided into two contact approaches. In the first Constraint Approach, the wheel is assumed to remain in contact with the rail. In this approach, the normal contact forces are determined by using the technique of Lagrange multipliers. In the second Elastic Approach, wheel/rail separation and penetration are allowed, and the normal contact forces are determined by using Hertz’s Theory. The advantages and disadvantages of each method are presented in this paper. In addition, this paper discusses future developments and improvements for the multibody system code. Some of these improvements are currently being implemented by the University of Illinois at Chicago (UIC). In the accompanying “Part 2” and “Part 3” to this paper, numerical examples are presented in order to demonstrate the results obtained from this research.


Author(s):  
Paul J. Pearson ◽  
David M. Bevly

This paper develops two analytical models that describe the yaw dynamics of a farm tractor and can be used to design or improve steering control algorithms for the tractor. These models are verified against empirical data. The particular dynamics described are the motions from steering angle to yaw rate. A John Deere 8420 tractor, outfitted with inertial sensors and controlled through a PC-104 form factor computer, was used for experimental validation. Conditions including different implements at varying depths, as would normally be found on a farm, were tested. This paper presents the development of the analytical models, validates them against empirical data, and gives trends on how the model parameters change for different configurations.


Sign in / Sign up

Export Citation Format

Share Document