Pulling at the Digital Thread: Exploring the Tolerance Stack Up in Scan to Print Processes

Author(s):  
Tobias Mahan ◽  
Brenna Doyle ◽  
Nicholas Meisel ◽  
Jessica Menold

The rise of affordable rapid non-contact digitizers and rapid prototyping tools, such as 3D printers, is enabling the seamless integration of geometric reverse engineering into the early phases of engineering design. Scanning technology has been widely adopted in bio-reverse engineering and the use of high fidelity non-contact scanners, such as Computed Tomography devices, allows designers, doctors, and researchers to digitally model boney structures, design orthotic and prosthetic devices, and preemptively plan complex surgeries. While the combination of 3D scanning and printing processes holds much promise for the fields of reverse engineering, biodesign, and new product development, problems with repeatability, accuracy, and precision have limited the wider spread adoption of 3D scan to print processes. While some studies have explored the errors inherent in higher fidelity scan to print (S2P) processes, no studies have explored the errors in S2P processes that leverage affordable rapid non-contact digitizers. The purpose of this study was to explore at which phases of the S2P process errors are introduced into the digital model. A controlled study was conducted using data from 27 scans using a common off-the-shelf non-contact optical digitizer and a relatively simple workpiece. Data from the digital thread was collected between each phase of the S2P process and compared against a truth model; the geometric and dimensional integrity of the data was calculated through a comparison between the digital model and the original truth model. Results indicate significant differences between digital models at the various steps of the S2P process.

2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Tobias Mahan ◽  
Nicholas Meisel ◽  
Christopher McComb ◽  
Jessica Menold

While the combination of 3D scanning and printing processes holds much promise for the field of new product development, problems with repeatability and accuracy have limited the wider spread adoption of some digital prototyping tools, such as 3D scanners. Studies have explored the errors inherent in higher fidelity scan to print (S2P) processes, yet few have explored the errors in S2P processes that leverage affordable rapid noncontact scanners. Studies have yet to explore the strategies that designers, who are experienced with additive manufacturing, employ to mitigate errors. To address these gaps, a controlled study was conducted using data from 27 scans collected with a prototypical off-the-shelf noncontact optical scanner. The geometric and dimensional integrity of the digital models was found to be significantly out of tolerance at various phases of the S2P process, as compared to the original physical model. Larger errors were found more consistently in the data acquisition phase of the S2P process, but results indicate these errors were not sufficiently filtered out during the remainder of the process. A behavioral study was conducted with 13 experienced designers in digital fabrication to determine strategies for manually cleaning Point Clouds. Actions such as increase or decrease in brush size and select or de-select points were recorded. These actions were analyzed using hidden Markov modeling, which revealed distinct patterns of behavior. Designer strategies were not beneficial and digital models produced by designers were found to be significantly smaller than original physical models.


Author(s):  
K. Albrecht ◽  
J. Lotz ◽  
L. Frommer ◽  
K. J. Lackner ◽  
G. J. Kahaly

Abstract Purpose Vitamin D (VitD) is a pleiotropic hormone with effects on a multitude of systems and metabolic pathways. Consequently, the relevance of a sufficiently high VitD serum level becomes self-evident. Methods A rapid immunofluorescence assay designed for the point-of-care measurement of serum VitD3 solely was tested. Inter- and intra-assay validation, double testing and result comparison with a standardized laboratory method were performed. Results An overall linear correlation of r = 0.89 (Pearson, 95% CI 0.88–0.92, p < 0.01) between the point of care and the conventional reference assay was registered. Accuracy and precision were of special interest at cut-points (10 ng/ml [mean deviation 1.7 ng/ml, SD 1.98 ng/ml, SE 0.16 ng/ml], 12 ng/ml [MD 0.41, SD 1.89, SE 0.19] and 30 ng/ml [MD − 1.11, SD 3.89, SE 0.35]). Only a slight deviation was detected between the two assays when using fresh (r = 0.91, 95% CI 0.86–0.94, p < 0.01) and frozen serum samples (r = 0.86, 0.82–0.89, p < 0.01). Results remained steady when samples were frozen several times. Inter- and intra-assay validation according to the CLSI protocol as well as multiuser testing showed stable results. Conclusion This novel, innovative, and controlled study indicates that the evaluated rapid point of care VitD assay is reliable, accurate, and suited for clinical practice.


2021 ◽  
Vol 11 (9) ◽  
pp. 4209
Author(s):  
Theodore Papatheodorou ◽  
John Giannatsis ◽  
Vassilis Dedoussis

Data Envelopment Analysis (DEA) is an established powerful mathematical programming technique, which has been employed quite extensively for assessing the efficiency/performance of various physical or virtual and simple or complex production systems, as well as of consumer and industrial products and technologies. The purpose of the present study is to investigate whether DEA may be employed for evaluating the technical efficiency/performance of 3D printers, an advanced manufacturing technology of increasing importance for the manufacturing sector. For this purpose, a representative sample of 3D printers based on Fused Deposition Modeling technology is examined. The technical factors/parameters of 3D printers, which are incorporated in the DEA, are investigated and discussed in detail. DEA evaluation results compare favorably with relevant benchmarks from experts, indicating that the suggested DEA technique in conjunction with technical and expert evaluation could be employed for evaluating the performance of a highly technological system, such as the 3D printer.


Author(s):  
J Poolton ◽  
I Barclay

There are few studies that have found an adequate means of assessing firms based on their specific needs for a concurrent engineering (CE) approach. Managers interested in introducing CE have little choice but to rely on their past experiences of introducing change. Using data gleaned from a nine month case study, a British-wide survey and a series of in-depth interviews, this paper summarizes the findings of a research study that examines how firms orientate themselves towards change and how they go about introducing CE to their operations. The data show that there are many benefits to introducing CE and that firms differ with respect to their needs for the CE approach. A tentative means to assess CE ‘needs’ is proposed which is based on the level of complexity of goods produced by firms. The method is currently being developed and extended to provide an applications-based framework to assist firms to improve their new product development performance.


2012 ◽  
Vol 452-453 ◽  
pp. 253-257 ◽  
Author(s):  
Li Lin ◽  
Xian Sheng Ran ◽  
Tian Hong Luo

This study extends the new product development (NPD) to a new field; Market Driving Digital New Product Development Method is addressed in this paper, which is based on reverse engineering and rapid prototyping technology. This study finds that the higher the effort on marketing-R&D process, the less possible it might encounter risk. Thus, a better NPD performance can be achieved by market driving Digital NPD method (MDDNPD).A case study of All-Terrain Vehicle (ATV) is used to illustrate the new method. We believe that the proposed methodology will have a positive impact on the future new product development.


Author(s):  
Ravi Ramakrishnan ◽  
Loveleen Gaur

The IoT and 3D printing can become a potent combination when it comes to launching new business initiatives driven by hard-core data and analytics and not really based on human perceptions or limited survey data. Previous empirical research has shown that drivers of new product performance are a mix of strategic, development process, organizational, and market environmental factors. This chapter attempts (1) to understand how introduction of IoT sensors embedded in customer appliances or wearable's sending real time customer information coupled with rapid prototyping using remotely located 3D printers can help address design considerations for new products, and (2) to provide an overview of how using IoT data and 3D printers for new product development and prototyping as an early stage activity can be done without using human imagination of restricted market survey data.


2014 ◽  
Vol 2014 (DPC) ◽  
pp. 000436-000458
Author(s):  
Lajos (Louis) Burgyan ◽  
Yuji Kakizaki

Technical analysis of intellectual property (IP) is conducted for the purpose of legal protection and product development. A brief review of the process of IP analysis and associated terminology is provided along with examples illustrating the significant potential for monetary benefits to be derived. The evolution of the reverse engineering (RE) process in the semiconductor industry is briefly reviewed from a historical perspective. It is shown how the objective of RE, while continuing its traditional engagement in IP protection, has shifted away from “second sourcing” activities to become an active participant by providing valuable services to technology and product development. The assertion is made that the negative connotation often associated with “reverse engineering” is no longer justified; and the legitimacy, usefulness, and respectability of that process is reaffirmed. The effects of international diffusion of technology are described. It is shown that being aware of technology content in competing high-tech products is now greater than ever before. The process of RE and the “toolbox” of career IP analysts are described through the analysis example of an advanced SOC and SIP structure. The dual utility of the analyst's toolbox and skill set is examined as it is being applied a) to the discovery process aimed at intellectual property protection and b) as a means to accelerate product development. Special attention is given to technical IP analysis conducted in association with new product research and development. Practical examples involving the analysis of advanced 3D structures are provided from the field of 3D integrated product development in order to demonstrate how technical IP analysis can a) help avoid costly mistakes, b) capture design wins, and c) accelerate new product development. The synergistic relationship between IP analysis applied to IP protection and product development is explored; and a coordinated and comprehensive approach to technical IP analysis is recommended whenever practical. A high-tech company will realize maximum benefits from a technical analyst's work if IP analysis of competing products is performed for the purpose of product development with the analyst remaining mindful and attentive of the need to protect corporate patent portfolio. Conversely, knowledge gained from technical analysis aimed at protecting the company's patents can be quite useful to the development engineer. Regardless of whether or not the analyst is an employee of the company or a hired sub-contractor, proper description of the task is crucial from the outset. The analyst should be encouraged to take a dual track approach with primary focus directed towards the main intent (IP protection or engineering analysis of a competing product or technology) without ignoring the secondary purpose. At the end of a project, an assessment should be made as to what part of the acquired knowledge is relevant to the engineering community and what portion of the report needs to be directed to the IP department. Technical IP analysis conducted with this dual purpose in mind is a cost-effective way to maximize return on investment (ROI) in RE. It can also be a powerful tool to reduce the cost of new product development while improving time to market. A new area of technical IP analysis, the extraction of parasitic R, L, C elements from SOC and SIP structures, is explored in detail. This field is believed to be of great importance in 3D integration due to the loss or breakup of ground and power delivery planes as a result of increased reliance on vertical interconnections such as interposers and TSVs. These structures introduce troublesome interconnect inductances, resistances, and capacitances. Both power distribution networks (PDN) and high-speed signal paths are affected by interconnect parasitic elements in component modules such as deep sub-micron 22nm ARM processors, multi-stack memories, and multilayer PCBs of high speed communication devices and systems. It is essential for circuit designers, package designers, and system designers to be aware of these risks as early in the design phase as possible. Practical examples are given how an entire PDN of a larger system including complex 2.5D and 3D packages, substrates, and PCB can be reconstructed from the power source down to individual components, including high-speed data paths. Such reconstruction is done using two-dimensional layer images and via structures. The reconstructed file can be 2D or 3D representation. Depending on the objective, the data residing in those files is then imported into state-of-the art circuit simulation tools familiar to the circuit or package designer. At that point, the circuit, package, or system designer can analyze the entire system and extract all parasitic interconnect elements. The circuit designer can then incorporate all those interconnect and passive component parasitic R, L, C, and M elements or their S-parameter representation into a top-level circuit simulation of an integrated circuit and obtain an accurate circuit performance that is truly representative of the final hardware. In summary, the need for precise modeling of the PDN section and certain high-speed data paths of SOC and SIP structures is reaffirmed, and a case is made for making this sometimes labor intensive process available as part of the technical analysis process. The synergy between reverse engineering conducted for the purpose of IP protection and product development is further emphasized. It is concluded that technical IP analysis, competitor product (hardware) analysis, and product development are activities complementary to one another. These activities, if executed thoughtfully, consistently, and systematically, can not only protect IP, increase intellectual asset value, but can also accelerate product development, guide and fuel innovation, and help in setting the direction of research and development.


1997 ◽  
Vol 34 (1) ◽  
pp. 64-76 ◽  
Author(s):  
X. Michael Song ◽  
Mark E. Parry

The authors report the results from a three-year study of new product development practices in Japanese firms. They develop a causal model of factors correlated with new product success. They test the model using data collected on 788 new products developed and commercialized by Japanese firms in the past four years. The “best practices” identified in this study suggest that Japanese new product success is positively influenced by the level of cross-functional integration and information sharing, the firm's marketing and technical resources and skills, the proficiency of the new product development activities undertaken, and the nature of market conditions. Cross-functional integration and product competitive advantage are two key determinants of new product success. The authors also discuss managerial and research implications.


2017 ◽  
Vol 81 (6) ◽  
pp. 1-23 ◽  
Author(s):  
Kartik Kalaignanam ◽  
Tarun Kushwaha ◽  
Tracey A. Swartz

This article examines the impact of new product development (NPD) “make/buy” choices on product quality using data from the automobile industry. Although the business press has lamented that NPD outsourcing compromises product quality, there is no systematic evidence to support or refute this assertion. Against this backdrop, this study tests a contingency model of the impact of NPD make/buy decisions on immediate and future product quality. The hypotheses are tested using data on NPD make/buy choices of 173 models of 12 automobile firms in the United States between 2007 and 2014. The authors find that whereas NPD buy has a more positive impact on immediate product quality, NPD make has a more positive impact on future product quality. Furthermore, the immediate product quality impact of NPD buy is stronger when (1) technologies are more complex and (2) firm NPD capability is higher. In contrast, the future product quality impact of NPD make is stronger when (1) there is postlaunch adverse feedback and (2) firm NPD capability is higher. The study highlights the complex trade-offs associated with NPD make/buy decisions and offers valuable insights on how firms could manage these decisions.


Sign in / Sign up

Export Citation Format

Share Document