scholarly journals An Integrated Design and Simulation Environment for Rapid Prototyping of Laminate Robotic Mechanisms

Author(s):  
Mohammad Sharifzadeh ◽  
Roozbeh Khodambashi ◽  
Daniel M. Aukes

Laminate mechanisms are a reliable concept in producing low-cost robots for educational and commercial purposes. These mechanisms are produced using low-cost manufacturing techniques which have improved significantly during recent years and are more accessible to novices and hobbyists. However, iterating through the design space to come up with the best design for a robot is still a time consuming and rather expensive task and therefore, there is still a need for model-based analysis before manufacturing. Until now, there has been no integrated design and analysis software for laminate robots. This paper addresses some of the issues surrounding laminate analysis by introducing a companion to an existing laminate design tool that automates the generation of dynamic equations and produces simulation results via rendered plots and videos. We have validated the accuracy of the software by comparing the position, velocity and acceleration of the simulated mechanisms with the measurements taken from physical laminate prototypes using a motion capture system.

Radio Science ◽  
2016 ◽  
Vol 51 (6) ◽  
pp. 619-628
Author(s):  
A. A. San-Blas ◽  
J. M. Roca ◽  
S. Cogollos ◽  
J. V. Morro ◽  
V. E. Boria ◽  
...  

2002 ◽  
Author(s):  
E.D. Niehenke ◽  
F.E. Sacks ◽  
M.D. Kline ◽  
A. Simon ◽  
W. Luce

1996 ◽  
Author(s):  
Richard W. Ridgway ◽  
Vincent D. McGinniss ◽  
Paul G. Andrus ◽  
James R. Busch

2000 ◽  
Author(s):  
Roger M. Crane

Abstract The U. S. Navy has a long-standing history of ship design using metals. With the improvements in weapon systems, it is becoming increasingly critical to design ship structures not only to satisfy the structural loading but also to exhibit additional multifunctional properties. This is becoming evident with structures such as the Advanced Enclosed Mast Sensor System, AEM/S, which was installed on the USS Radford. This structure was designed to house radar systems and allow the passage of certain radar frequencies through the structure while simultaneously not allowing the penetration of radar at other frequencies. In addition, the structure was designed to reduce the ship’s detectability. This paper will present a summary of the large-scale composite manufacturing that is being considered for Naval Structures. These structures are being manufactured using low-cost manufacturing techniques and are incorporating multifunctional characteristics in addition to meeting the structural requirement of the application. This paper will provide a historical discussion on the use of composite applications in the surface fleet.


2011 ◽  
Vol 133 (8) ◽  
Author(s):  
Matthew Santer ◽  
Sergio Pellegrino

A concept is presented for a compliant plate structure that deforms elastically into a variety of cylindrical shapes and is able to maintain such shapes due to the presence of bistable components within the structure. The whole structure may be fabricated as a monolithic entity using low-cost manufacturing techniques such as injection molding. The key steps in the analysis of this novel concept are presented, and a functional model is designed and constructed to demonstrate the concept and validate the analysis.


2021 ◽  
Vol 13 (12) ◽  
pp. 6944
Author(s):  
Emma Anna Carolina Emanuelsson ◽  
Aurelie Charles ◽  
Parimala Shivaprasad

With stringent environmental regulations and a new drive for sustainable manufacturing, there is an unprecedented opportunity to incorporate novel manufacturing techniques. Recent political and pandemic events have shown the vulnerability to supply chains, highlighting the need for localised manufacturing capabilities to better respond flexibly to national demand. In this paper, we have used the spinning mesh disc reactor (SMDR) as a case study to demonstrate the path forward for manufacturing in the post-Covid world. The SMDR uses centrifugal force to allow the spread of thin film across the spinning disc which has a cloth with immobilised catalyst. The modularity of the design combined with the flexibility to perform a range of chemical reactions in a single equipment is an opportunity towards sustainable manufacturing. A global approach to market research allowed us to identify sectors within the chemical industry interested in novel reactor designs. The drivers for implementing change were identified as low capital cost, flexible operation and consistent product quality. Barriers include cost of change (regulatory and capital costs), limited technical awareness, safety concerns and lack of motivation towards change. Finally, applying the key features of a Sustainable Business Model (SBM) to SMDR, we show the strengths and opportunities for SMDR to align with an SBM allowing for a low-cost, sustainable and regenerative system of chemical manufacturing.


Robotica ◽  
2020 ◽  
pp. 1-17
Author(s):  
Wenzhong Yan ◽  
Ankur Mehta

SUMMARY To improve the accessibility of robotics, we propose a design and fabrication strategy to build low-cost electromechanical systems for robotic devices. Our method, based on origami-inspired cut-and-fold and E-textiles techniques, aims at minimizing the resources for robot creation. Specifically, we explore techniques to create robots with the resources restricted to single-layer sheets (e.g., polyester film) and conductive sewing threads. To demonstrate our strategy’s feasibility, these techniques are successfully integrated into an electromechanical oscillator (about 0.40 USD), which can generate electrical oscillation under constant-current power and potentially be used as a simple robot controller in lieu of additional external electronics.


2003 ◽  
Vol 1819 (1) ◽  
pp. 338-342 ◽  
Author(s):  
Simon Oloo ◽  
Rob Lindsay ◽  
Sam Mothilal

The geology of the northeastern part of the province of KwaZulu–Natal, South Africa, is predominantly alluvial with vast deposits of sands. Suitable gravel sources are hard to come by, which results in high graveling and regraveling costs brought about by long haul distances and accelerated gravel loss. Most gravel roads carry fewer than 500 vehicles per day of which less than 10% are heavy vehicles. The high cost of regraveling has led to consideration of upgrading such roads to surfaced standard, even though traffic volumes do not justify upgrading. Traditional chip seals are expensive and cannot be economically justified on roads that carry fewer than 500 vehicles per day. The KwaZulu–Natal Department of Transport is actively involved in efforts to identify cost-effective alternative surfacing products for low-volume roads. Field trials were conducted with Otta seals and Gravseals, which have been used successfully in other countries, as low-cost surfacing products for low-volume roads. The Otta seal is formed by placing graded aggregates on a relatively thick film of soft binder that, because of traffic and rolling, works its way through the aggregates. Gravseal consists of a special semipriming rubberized binder that is covered by a graded aggregate. Both Otta seals and Gravseals provide relatively flexible bituminous surfaces suitable for low-volume roads. Cost savings are derived mainly from the broad aggregate specifications, which allow for the use of marginal materials.


Author(s):  
Marco Vinicio Alban ◽  
Haechang Lee ◽  
Hanul Moon ◽  
Seunghyup Yoo

Abstract Thin dry electrodes are promising components in wearable healthcare devices. Assessing the condition of the human body by monitoring biopotentials facilitates the early diagnosis of diseases as well as their prevention, treatment, and therapy. Existing clinical-use electrodes have limited wearable-device usage because they use gels, require preparation steps, and are uncomfortable to wear. While dry electrodes can improve these issues and have demonstrated performance on par with gel-based electrodes, providing advantages in mobile and wearable applications; the materials and fabrication methods used are not yet at the level of disposable gel electrodes for low-cost mass manufacturing and wide adoption. Here, a low-cost manufacturing process for thin dry electrodes with a conductive micro-pyramidal array is presented for large-scale on-skin wearable applications. The electrode is fabricated using micromolding techniques in conjunction with solution processes in order to guarantee ease of fabrication, high device yield, and the possibility of mass production compatible with current semiconductor production processes. Fabricated using a conductive paste and an epoxy resin that are both biocompatible, the developed micro-pyramidal array electrode operates in a conformal, non-invasive manner, with low skin irritation, which ensures improved comfort for brief or extended use. The operation of the developed electrode was examined by analyzing electrode-skin-electrode impedance, electroencephalography, electrocardiography, and electromyography signals and comparing them with those measured simultaneously using gel electrodes.


Sign in / Sign up

Export Citation Format

Share Document