Development of a Modal Selection Method for Full Strain Field Estimation

Author(s):  
Gen Fu ◽  
Alexandrina Untaroiu

Abstract Full field response of a structure is critical for evaluating the performance of large slender structures. Since only several discrete measurements can be acquired during operation, the data expansion method is important for the estimation of the full field responses of the large complex structure. In previous studies, modal transformation methods were mainly applied in model reduction/expansion and global shape sensing. Compared to other expansion methods, the modal method is straightforward to implement and computational efficient, which makes it the most suitable approach for real-time expansion. However, only the first several modes were included in the modal transformation method in previous studies. Since the errors due to truncated mode components can occur under high frequency band excitations, it is necessary to include all of the modes that contribute significantly to the responses of the structure. Therefore, in this study, a modal selection method based on operational modal analysis (OMA) is proposed for selecting proper modes. The modal characteristics of the system were derived with the strain data at several discrete locations. The contribution of each mode was quantified. By sorting the modes based on their contribution, the most significant modes can be used in the expansion process. Two operational modal analysis methods, stochastic system identification (SSI) and frequency domain decomposition (FDD), were considered and compared. The proposed approach was implemented with a computational model. Considerable improvement has been observed when high bandwidth excitations were added. The proposed modal selection method can successfully rank the participated modes. It can improve the accuracy of the modal transformation approach as shown in the impact loading case. It can be used for data expansion even when high frequency band is excited. Finally, we believe the novel methods presented in this study could be used in the development of more reliable health monitoring systems for turbomachinery.

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1602
Author(s):  
Ángel Molina-Viedma ◽  
Elías López-Alba ◽  
Luis Felipe-Sesé ◽  
Francisco Díaz

Experimental characterization and validation of skin components in aircraft entails multiple evaluations (structural, aerodynamic, acoustic, etc.) and expensive campaigns. They require different rigs and equipment to perform the necessary tests. Two of the main dynamic characterizations include the energy absorption under impact forcing and the identification of modal parameters through the vibration response under any broadband excitation, which also includes impacts. This work exploits the response of a stiffened aircraft composite panel submitted to a multi-impact excitation, which is intended for impact and energy absorption analysis. Based on the high stiffness of composite materials, the study worked under the assumption that the global response to the multi-impact excitation is linear with small strains, neglecting the nonlinear behavior produced by local damage generation. Then, modal identification could be performed. The vibration after the impact was measured by high-speed 3D digital image correlation and employed for full-field operational modal analysis. Multiple modes were characterized in a wide spectrum, exploiting the advantages of the full-field noninvasive techniques. These results described a consistent modal behavior of the panel along with good indicators of mode separation given by the auto modal assurance criterion (Auto-MAC). Hence, it illustrates the possibility of performing these dynamic characterizations in a single test, offering additional information while reducing time and investment during the validation of these structures.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Songyan Yang ◽  
Weibo Deng ◽  
Qiang Yang ◽  
Guangxin Wu ◽  
Ying Suo

Due to the heavy jamming band of high frequency, frequency selecting strategies are serious issues for the system designed to achieve its best performance. Pole is independent of the direction and polarization of the incident wave, but the residue corresponding to the pole is related to the direction and polarization of the incident wave. And the value of residue is proportional to the value of the pole. This paper chooses the frequency which can maximize the residue in the high-frequency band as the optimal frequency for accurate extraction. The simulation result of a large number of ship targets shows remarkable rise in average recognition rate by using this method, compared with the average recognition rate of randomly selected frequency.


2004 ◽  
Vol 34 (2) ◽  
pp. 371-398
Author(s):  
LUCIA ORLANDO

ABSTRACT: The story of the first Italian communications satellite, SIRIO, started in 1968, after the failure of the European project for the vector ELDO-PAS. The story up to the launch in 1977 involved the encumbering legacy of the San Marco satellite's success in the 1960s, political uncertainty in Italy, international economic crises of the 1970s, an overtly complex management system, and an inexperienced aerospace industry. Despite these handicaps, SIRIO won the race with its nearest competitor, the European satellite OTS, which had a similar research aim in the super high frequency band. In addition to collecting a large amount of useful data, SIRIO catalyzed the process for developing an improved organizational structure for Italian space research.


Nanoscale ◽  
2017 ◽  
Vol 9 (37) ◽  
pp. 14192-14200 ◽  
Author(s):  
B. Aïssa ◽  
M. Nedil ◽  
J. Kroeger ◽  
M. I. Hossain ◽  
K. Mahmoud ◽  
...  

Materials offering excellent mechanical flexibility, high electrical conductivity and electromagnetic interference (EMI) attenuation with minimal thickness are in high demand, particularly if they can be easily processed into films.


2018 ◽  
Vol 10 (12) ◽  
pp. 122 ◽  
Author(s):  
Zubin Chen ◽  
Baijun Lu ◽  
Yanzhou Zhu ◽  
Hao Lv

In this paper, a printed monopole antenna design for WiMAX/WLAN applications in cable-free self-positioning seismograph nodes is proposed. Great improvements were achieved in miniaturizing the antenna and in widening the narrow bandwidth of the high-frequency band. The antenna was fed by a microstrip gradient line and consisted of a triangle, an inverted-F shape, and an M-shaped structure, which was rotated 90° counterclockwise to form a surface-radiating patch. This structure effectively widened the operating bandwidth of the antenna. Excitation led to the generation of two impedance bands of 2.39–2.49 and 4.26–7.99 GHz for a voltage standing wave ratio of less than 2. The two impedance bandwidths were 100 MHz, i.e., 4.08% relative to the center frequency of 2.45 GHz, and 3730 MHz, i.e., 64.31% relative to the center frequency of 5.80 GHz, covering the WiMAX high-frequency band (5.25–5.85 GHz) and the WLAN band (2.4/5.2/5.8). This article describes the design details of the antenna and presents the results of both simulations and experiments that show good agreement. The proposed antenna meets the field-work requirements of cable-less seismograph nodes.


Sign in / Sign up

Export Citation Format

Share Document