Rule of Mixtures Model for 3D Printed Kevlar Reinforced Nylon: Determination of Volume Fraction Using Thermal Gravimetric Analysis

Author(s):  
Anosh P. Amaria ◽  
Jason N. Armstrong ◽  
Felipe M. Pasquali ◽  
John F. Hall

Abstract An experimental procedure to determine the elastic modulus and tensile strength of kevlar reinforced nylon composites is discussed. Thermal Gravimetric Analysis (TGA), has been performed to determine the volume fraction of fiber and matrix components. TGA is a robust method to determine the volume fraction. It is also less labor intensive as compared to other methods. Samples with varying kevlar-nylon layer ratio were additively manufactured using fused deposition modelling (FDM) based on ASTM D3039 standards. MarkForged Mark X7 3D printer was used to manufacture samples. Elastic and tensile tests of the samples were conducted. The relation between volume fraction and elastic modulus of the composite can indeed be fit into the rule of mixtures model. However, its applicability for ultimate tensile strength for high fiber ratio composites has been put to question. The direction of fibers in the additively manufactured samples has been kept parallel to the loading direction. In this paper we will give the readers a deeper understanding of how additively manufactured composite samples behave under loading, further facilitating the design process for materials produced by additive manufacturing.

2021 ◽  
Vol 1208 (1) ◽  
pp. 012019
Author(s):  
Adi Pandzic ◽  
Damir Hodzic

Abstract One of the advantages provided by fused deposition modelling (FDM) 3D printing technology is the manufacturing of product materials with infill structure, which provides advantages such as reduced production time, product weight and even the final price. In this paper, the tensile mechanical properties, tensile strength and elastic modulus, of PLA, Tough PLA and PC FDM 3D printed materials with the infill structure were analysed and compared. Also, the influence of infill pattern on tensile properties was analysed. Material testing were performed according to ISO 527-2 standard. All results are statistically analysed and results showed that infill pattern have influence on tensile mechanical properties for all three materials.


2018 ◽  
Vol 774 ◽  
pp. 161-166 ◽  
Author(s):  
Octavio Andrés González-Estrada ◽  
Alberto Pertuz ◽  
Jabid E. Quiroga Mendez

Three-dimensional (3D) printing technology has been traditionally used for the production of prototypes. Recently, developments in 3D printing using Fused Deposition Modelling (FDM) and reinforcement with continuous fibres (fiberglass and carbon fibre), have allowed the manufacture of functional prototypes, considerably improving the mechanical performance of the composite parts. In this work, we characterise the elastic tensile properties of fibre reinforced specimens, considering the variation of several parameters available during the printing process: fibre orientation, volume fraction, fill pattern, reinforcement distribution. Tensile tests were performed according to ASTM D638 to obtain Young’s modulus and ultimate strength for different material configurations available during the printing process. We also perform a fractographic analysis using Scanning Electron Microscopy (SEM) to give an insight of the failure mechanisms present in the specimens.


Author(s):  
Kaiyue Deng ◽  
Hamid Khakpour Nejadkhaki ◽  
Felipe M. Pasquali ◽  
Anosh P. Amaria ◽  
Jason N. Armstrong ◽  
...  

Abstract A model to compute the elastic modulus and tensile properties of 3D printed Carbon Fiber Reinforced Polymers (CFRP) is presented. The material under consideration is Carbon Fiber Reinforced Nylon (CFRN) produced in a Fused Deposition Modeling (FDM) process. A relationship between the nylon raster in each layer and the carbon fiber volume fraction was devised with the help of a scanning electron microscope (SEM). Thirteen groups with different layer configurations and carbon-fiber percentages were formulated and tested to obtain the elastic modulus and tensile strength. This study focused only on the properties along the printed fiber direction. The results from these tests were analyzed within the rule of mixtures framework. The results suggest that the rule of mixtures can be successfully applied to unidirectional CFRP fabricated using additive manufacturing.


2020 ◽  
pp. 096739112096844
Author(s):  
Sameer A Awad

The improvements of the thermal, mechanical, morphological properties of low-density polyethylene (LDPE)/nanoclay (NC) composites were investigated. Low-density polyethylene (LDPE) with different NC contents 2 wt.% ( V f = 8%), 4 wt.% ( V f = 15), and 8 wt.% ( V f = 27) with a fixed particle size (300μm) were prepared by the melt mixing process. The thermal tests (thermal gravimetric analysis) were performed to monitor the thermal stability of LDPE composites. The mechanical tests such as tensile strength, Young’s modulus, and strain at break were studied. The results of the thermal gravimetric analysis (TGA) display significant enhancement in thermal stability as the loading of NC increased in pure LDPE. The results showed that the NC fillers could effectively improve the mechanical properties of LDPE by comparison to pure LDPE, the tensile strength of LDPE/8 wt.% of NC are increasing by about 17% while Young’s modulus is increased by about 39%. From DMA results, the storage modulus is enhanced with increasing of NC loading into the LDPE matrix. The results of SEM photographs indicate that the incorporation 8 wt.% of NC displayed the best particles dispersion in the LDPE matrix.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sebastián Tognana ◽  
Susana Montecinos ◽  
Rosana Gastien ◽  
Walter Salgueiro

Abstract Commonly used 3D printed samples are partially infilled to reduce time and cost of printing, with mechanical properties dependent on the infill. In this work, the influence of the percentage and pattern of infill in PLA printed samples on the elastic modulus and characteristic stresses was analyzed. The elastic modulus, E, and characteristic stresses (σ 0.2, σ 4 and the maximum tensile stress) were determined for each sample using impulse excitation technique, IET, and uniaxial tensile tests. An apparent density was calculated for each pattern and infill percentage, and the mechanical parameters were studied as a function of such density. The results of IET obtained in different modes of vibration were analyzed and an apparent value of E was calculated. FEM simulations were carried out and the results were compared with the experimental ones. The mechanical properties for different infill percentages and infill patterns were studied by comparing the specific values of E and the stresses. Samples with higher infill percentages exhibit the best specific values of maximum stress and E, but the sample with 20% infill has the highest specific yield stress and a good value of the specific E from flexural vibrations.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (4) ◽  
pp. 29-33
Author(s):  
LEE A. GOETZ ◽  
AJI P. MATHEW ◽  
KRISTIINA OKSMAN ◽  
ARTHUR J. RAGAUSKAS

The thermal stability and decomposition of in-situ crosslinked nanocellulose whiskers – poly(methyl vinyl ether-co-maleic acid) – polyethylene glycol formulations (PMVEMA-PEG), (25%, 50%, and 75% whiskers) – were investigated using thermal gravimetric analysis (TGA) methods. The thermal degradation behavior of the films varied according to the percent cellulose whiskers in each formulation. The presence of cellulose whiskers increased the thermal stability of the PMVEMA-PEG matrix.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1333 ◽  
Author(s):  
Adrián Rodríguez-Panes ◽  
Juan Claver ◽  
Ana Camacho

This paper presents a comparative study of the tensile mechanical behaviour of pieces produced using the Fused Deposition Modelling (FDM) additive manufacturing technique with respect to the two types of thermoplastic material most widely used in this technique: polylactide (PLA) and acrylonitrile butadiene styrene (ABS). The aim of this study is to compare the effect of layer height, infill density, and layer orientation on the mechanical performance of PLA and ABS test specimens. The variables under study here are tensile yield stress, tensile strength, nominal strain at break, and modulus of elasticity. The results obtained with ABS show a lower variability than those obtained with PLA. In general, the infill percentage is the manufacturing parameter of greatest influence on the results, although the effect is more noticeable in PLA than in ABS. The test specimens manufactured using PLA perform more rigidly and they are found to have greater tensile strength than ABS. The bond between layers in PLA turns out to be extremely strong and is, therefore, highly suitable for use in additive technologies. The methodology proposed is a reference of interest in studies involving the determination of mechanical properties of polymer materials manufactured using these technologies.


2000 ◽  
Vol 9 (4) ◽  
pp. 096369350000900 ◽  
Author(s):  
C. Gonzalez ◽  
J. Llorca

The effect of processing on the mechanical properties of Sigma 1140+ SiC fibres was studied through tensile tests carried out on pristine Sigma 1140+ SiC fibres and on fibres extracted from a Ti-6A1-4V-matrix composite. The elastic modulus and the tensile strength were computed after measuring carefully the fibre diameter. The characteristic fibre strength was reduced by 20% and the Weibull modulus by half during composite processing. The analysis of the fracture surfaces in the scanning electron microscope showed that the strength-limiting defects were located around the tungsten core in pristine fibres and predominantly at the surface in fibres extracted from the composite panels. These latter defects were nucleated by the mechanical stresses generated on the fibres during the panel consolidation.


Sign in / Sign up

Export Citation Format

Share Document