scholarly journals The Influence of Manufacturing Parameters on the Mechanical Behaviour of PLA and ABS Pieces Manufactured by FDM: A Comparative Analysis

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1333 ◽  
Author(s):  
Adrián Rodríguez-Panes ◽  
Juan Claver ◽  
Ana Camacho

This paper presents a comparative study of the tensile mechanical behaviour of pieces produced using the Fused Deposition Modelling (FDM) additive manufacturing technique with respect to the two types of thermoplastic material most widely used in this technique: polylactide (PLA) and acrylonitrile butadiene styrene (ABS). The aim of this study is to compare the effect of layer height, infill density, and layer orientation on the mechanical performance of PLA and ABS test specimens. The variables under study here are tensile yield stress, tensile strength, nominal strain at break, and modulus of elasticity. The results obtained with ABS show a lower variability than those obtained with PLA. In general, the infill percentage is the manufacturing parameter of greatest influence on the results, although the effect is more noticeable in PLA than in ABS. The test specimens manufactured using PLA perform more rigidly and they are found to have greater tensile strength than ABS. The bond between layers in PLA turns out to be extremely strong and is, therefore, highly suitable for use in additive technologies. The methodology proposed is a reference of interest in studies involving the determination of mechanical properties of polymer materials manufactured using these technologies.

Author(s):  
Andrew Aitchison ◽  
Qing Wang

Abstract Additive manufacture, specifically Fused Deposition Modeling (FDM), is an advancing manufacture method opening up new possibilities in design previously impossible to machine, in a relatively affordable way. However, its use in functional products is limited due to anisotropic strength and reduced strength from injection molded components. This paper aims to increase the tensile strength of Acrylonitrile Butadiene Styrene (ABS) in the weakest direction (Z axis), where poor interlayer fusion and air gaps between extruded trails reduce strength. Extra thermal energy was applied to the top surface layer during the printing process (through hot air) to encourage more polymer chain diffusion across the boundary, and spreading out to fill air gaps. Multiple tensile test samples were printed at a variety of heat levels. The ultimate tensile strength σuts was plotted against these temperatures and a weak positive correlation was found. However, only air temperatures above 81°C increased strength past the control to a maximum of 1.4MPa. Heat application has proven to increase tensile strength, but needs to be applied with a more precise method, to the boundary interface, to allow greater thermal energy transfer without sacrificing print quality.


2020 ◽  
Vol 26 (1) ◽  
pp. 122-133 ◽  
Author(s):  
Sofiane Guessasma ◽  
Sofiane Belhabib ◽  
Hedi Nouri

Purpose This paper aims to investigate the effect of printing temperature on the thermal and the mechanical behaviour of polylactic acid (PLA)-polyhydroxyalkanoate (PHA) blend printed using fused deposition modelling (FDM). Design/methodology/Approach Because of the use of an infra-red camera, thermal cycling during the laying down is quantified. In addition, X-ray micro-tomography is considered to reveal the microstructural arrangement within the three-dimensional printed material. Tensile loading conditions are used to derive Young’s modulus, tensile strength and fracture toughness, and relate these to the printing temperature. Finite element computation based on three-dimensional microstructure information is used to predict the role of defects on the tensile performance. Findings The results show a remarkable cohesive structure of PLA-PHA, particularly at 240°C. This cohesive structure is explained by the ability to ensure heat accumulation during laying down as evidenced by the nature of thermal cycling. The printing temperature is found to be a key factor for tuning the ductility of the printed PLA-PHA allowing full restoration of tensile strength at high printing temperature. Originality/value This study reports new results related to the thermo-mechanical behaviour of PLA-PHA that did not receive much attention in three-dimensional printing despite its potential as a candidate for pharmacological and medical applications. This study concludes by a wide range of possible printing temperatures for PLA-PHA and a remarkable low porosity generated by FDM.


2020 ◽  
Vol 26 (10) ◽  
pp. 1733-1738
Author(s):  
André Luiz Alves Guimarães ◽  
Vicente Gerlin Neto ◽  
Cesar Renato Foschini ◽  
Maximiliano dos Anjos Azambuja ◽  
Luiz Antonio Vasques Hellmeister

Purpose The purpose of this paper is to investigate and discuss the influence of printing parameters on the mechanical properties of acrylonitrile butadiene styrene (ABS) print by fused deposition modelling (FDM). The mechanical properties of ABS are highly influenced by printing parameters, and they determine the final product quality of printed pieces. Design/methodology/approach For the paper’s purpose, five main parameters (extrusion temperature, infill pattern, air gap, printing speed and layer thickness) were selected and varied during ABS printing on an open-source and self-replicable FDM printer. Three different colors of commercially available ABS were also used to investigate color and printing parameter’s influence on the tensile strength. Findings The research results suggest that two parameters (infill pattern and layer thickness) were most influential on the mechanical properties of print ABS, being able to enhance its tensile strength. Another key influential factor was material color selected prior to printing, which influenced the tensile strength of the print specimen. Originality/value This study provides information on print parameters’ influence on the tensile strength of ABS print on replicable open-source three-dimensional (3D) printers. It also suggests the influence of materials’ color on print pieces’ tensile strength, indicating a new parameter for materials selection for 3D printing.


Inventions ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 93
Author(s):  
Muhammad Harris ◽  
Johan Potgieter ◽  
Hammad Mohsin ◽  
Karnika De Silva ◽  
Marie-Joo Le Guen

Acrylonitrile butadiene styrene (ABS) is a renowned commodity polymer for additive manufacturing, particularly fused deposition modelling (FDM). The recent large-scale applications of 3D-printed ABS require stable mechanical properties than ever needed. However, thermochemical scission of butadiene bonds is one of the contemporary challenges affecting the overall ABS stability. In this regard, literature reports melt-blending of ABS with different polymers with high thermal resistance. However, the comparison for the effects of different polymers on tensile strength of 3D-printed ABS blends was not yet reported. Furthermore, the cumulative studies comprising both blended polymers and in-process thermal variables for FDM were not yet presented as well. This research, for the first time, presents the statistical comparison of tensile properties for the added polymers and in-process thermal variables (printing temperature and build surface temperature). The research presents Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) to explain the thermochemical reasons behind achieved mechanical properties. Overall, ABS blend with PP shows high tensile strength (≈31 MPa) at different combinations of in-process parameters. Furthermore, some commonalities among both blends are noted, i.e., the tensile strength improves with increase of surface (bed) and printing temperature.


Author(s):  
K. Savvakis ◽  
M. Petousis ◽  
A. Vairis ◽  
N. Vidakis ◽  
A. T. Bikmeyev

Acrylonitrile–butadiene–styrene (ABS) is a popular engineering thermoplastic and it is the most common material used in fused deposition modeling (FDM) technology. This technology is nowadays used for the production of prototypes and functional parts as well. It is therefore critical to know the mechanical properties of these parts, which, is as expected different from their nominal values. In this work the tensile strength of parts build with the FDM process is measured. ABS and ABS plus parts were built with different building parameters and were tested according to the ASTM D638-02a standard on a Schenk Trebel Co. tensile test machine. It was found that the building direction does not significantly influence the tensile strength of the parts, although the parts were anisotropic, as expected. Parts build with larger layer thickness showed lower tensile strength. The average deviation between nominal and experimental tensile strength was about 15% for the ABS and about 42% for the ABS plus material. The ABS plus showed on average 9% higher strength than ABS.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hamed Adibi ◽  
Mohammad Reza Hashemi

Purpose The purpose of this paper is to investigate the variables of the fused deposition modelling (FDM) process and improve their effect on the mechanical properties of acrylonitrile butadiene styrene (ABS) components reinforced with copper microparticles. Design/methodology/approach In the experimental approach, after drying the ABS granule, it was mixed with copper microparticles (at concentrations of 5%, 8% and 10%) in a single screw extruder to fabricate pure ABS and composite filaments. Then, by making the components by the FDM process, the tensile strength of the parts was determined through tensile strength tests. Taguchi DOE method was used to design the experiments in which nozzle temperature, filling pattern and layer thickness were the design variables. The analysis of variance (ANOVA) and signal-to-noise analysis were conducted to determine the effectiveness of each FDM process parameter on the ultimate tensile strength of printed samples. Following that, the main effect analysis was used to optimize each process parameter for pure ABS and its composite at different copper contents. Findings The study allows the layer thickness and filling pattern had the highest effects on the ultimate tensile strength of the printed materials (pure and composite) in the FDM process. Moreover, the results show that the ultimate tensile strength of the ABS composite containing 5% copper was nearly 12.3% higher than the pure ABS part. According to validation tests, the maximum error of experiments was about 0.96%. Originality/value In this paper, the effect of copper microparticles (as filling agent) was investigated on the ultimate tensile strength of printed ABS material during the FDM process.


2021 ◽  
Vol 5 (1) ◽  
pp. 29
Author(s):  
Narongkorn Krajangsawasdi ◽  
Lourens G. Blok ◽  
Ian Hamerton ◽  
Marco L. Longana ◽  
Benjamin K. S. Woods ◽  
...  

Fused deposition modelling (FDM) is a widely used additive layer manufacturing process that deposits thermoplastic material layer-by-layer to produce complex geometries within a short time. Increasingly, fibres are being used to reinforce thermoplastic filaments to improve mechanical performance. This paper reviews the available literature on fibre reinforced FDM to investigate how the mechanical, physical, and thermal properties of 3D-printed fibre reinforced thermoplastic composite materials are affected by printing parameters (e.g., printing speed, temperature, building principle, etc.) and constitutive materials properties, i.e., polymeric matrices, reinforcements, and additional materials. In particular, the reinforcement fibres are categorized in this review considering the different available types (e.g., carbon, glass, aramid, and natural), and obtainable architectures divided accordingly to the fibre length (nano, short, and continuous). The review attempts to distil the optimum processing parameters that could be deduced from across different studies by presenting graphically the relationship between process parameters and properties. This publication benefits the material developer who is investigating the process parameters to optimize the printing parameters of novel materials or looking for a good constituent combination to produce composite FDM filaments, thus helping to reduce material wastage and experimental time.


2018 ◽  
Vol 24 (6) ◽  
pp. 921-934 ◽  
Author(s):  
Mohammad Abu Hasan Khondoker ◽  
Asad Asad ◽  
Dan Sameoto

Purpose This paper aims to target to print functionally gradient materials (FGM) devices made of immiscible polymers in multi-material fused deposition modelling (FDM) systems. The design is intended to improve adhesion of dissimilar thermoplastics without the need for chemical compatibilization so that filaments from many different sources can be used effectively. Therefore, there is a need to invent an alternative solution for printing multiple immiscible polymers in an FDM system with the desired adhesion. Design/methodology/approach In this study, the authors have developed a bi-extruder for FDM systems which can print two thermoplastics through a single nozzle with a static intermixer to enhance bonding between input materials. The system can also change the composition of extrudates continuously. Findings The uniqueness of this extruder is in its easy access to the internal channel so that a static intermixer can be inserted, enabling deposition of mechanically interlocked extrudates composed of two immiscible polymers. Without this intermixer, the bi-extruder extrudes with simple side-by-side co-extrusion having no mechanical interlocking. The bi-extruder was characterized by printing objects using pairs of materials including polylactic acid, acrylonitrile butadiene styrene and high impact polystyrene. Microscope images of the cross-sections of the extrudates confirm the ability of this bi-extruder to control the composition as desired. It was also found that the mechanically interlocked extrudates composed of two immiscible polymers substantially reduces adhesion failures within and between filaments. Originality/value In this study, the first-ever FDM extruder with a mechanical blending feature next to the nozzle has been designed and used to successfully print FGM objects with improved mechanical properties.


2021 ◽  
Vol 27 (3) ◽  
pp. 465-474
Author(s):  
Martin Krčma ◽  
David Škaroupka ◽  
Petr Vosynek ◽  
Tomáš Zikmund ◽  
Jozef Kaiser ◽  
...  

Purpose This paper aims to focus on the evaluation of a polymer concrete as a three-dimensional (3D) printing material. An associated company has developed plastic concrete made from reused unrecyclable plastic waste. Its intended use is as a construction material. Design/methodology/approach The concrete mix, called PolyBet, composed of polypropylene and glass sand, is printed by the fused deposition modelling process. The process of material and parameter selection is described. The mechanical properties of the filled material were compared to its cast state. Samples were made from castings and two different orientations of 3D-printed parts. Three-point flex tests were carried out, and the area of the break was examined. Computed tomography of the samples was carried out. Findings The influence of the 3D printing process on the material was evaluated. The mechanical performance of the longitudinal samples was close to the cast state. There was a difference in the failure mode between the states, with cast parts exhibiting a tougher behaviour, with fractures propagating in a stair-like manner. The 3D-printed samples exhibited high degrees of porosity. Originality/value The results suggest that the novel material is a good fit for 3D printing, with little to no degradation caused by the process. Layer adhesion was shown to be excellent, with negligible effect on the finished part for the longitudinal orientation. That means, if large-scale testing of buildability is successful, the material is a good fit for additive manufacturing of building components and other large-scale structures.


Sign in / Sign up

Export Citation Format

Share Document