Investigation of Printing Parameters of Additive Manufacturing Process for Sustainability Using Design of Experiments

Author(s):  
Marwan Khalid ◽  
Qingjin Peng

Abstract Additive Manufacturing (AM) offers many advantages to make objects compared to traditional subtractive manufacturing, for example, complex geometries can be easily fabricated, and light weight parts can be formed while maintaining the parts strength for the low carbon footprint, low material consumption and waste. But there are areas for AM to improve in sustainability, reliability, productivity, robustness, material diversity and part quality. Life cycle assessment (LCA) studies have identified that the AM printing stage has a big impact on the life cycle sustainability (LCS) of 3D printed products. AM building parameters can be properly selected to control the LCS. This research explores the optimal AM process parameters to reduce the process energy and material consumption. Investigated parameters include the printing layer height, number of shells, material infilling percentage, infilling type and building orientation. Design of experiments (DOE) approach and statistical analysis tools are used to find optimal parameter settings for sustainable AM. Models formulated in this research can be easily extended to other additive manufacturing processes.

2021 ◽  
pp. 1-33
Author(s):  
Marwan Khalid ◽  
Qingjin Peng

Abstract Additive Manufacturing (AM) offers many advantages to make objects compared to traditional subtractive manufacturing. For example, complex geometries can be easily fabricated, and light weight parts can be formed while maintaining the parts strength for the low carbon footprint, low material consumption and waste. But there are areas for AM to improve in sustainability, reliability, productivity, robustness, material diversity and part quality. Life cycle assessment studies have identified that the AM printing stage has a big impact on the life cycle sustainability of 3D printed products. AM building parameters can be properly selected to control the product life cycle sustainability. This paper explores the optimal Fused Deposition Modelling (FDM) process parameters to reduce the energy and material consumption. Investigated parameters include the printing layer height, number of shells, material infilling percentage, infilling type, and building orientation. Taguchi design of experiments approach and statistical analysis tools are used to find optimal FDM parameter settings for sustainability. Models formulated in this research can be easily extended to other AM processes.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Marcel Müller ◽  
Elmar Wings

Additive manufacturing is one of the key technologies of the 21st century. Additive manufacturing processes are often combined with subtractive manufacturing processes to create hybrid manufacturing because it is useful for manufacturing complex parts, for example, 3D printed sensor systems. Currently, several CNC machines are required for hybrid manufacturing: one machine is required for additive manufacturing and one is required for subtractive manufacturing. Disadvantages of conventional hybrid manufacturing methods are presented. Hybrid manufacturing with one CNC machine offers many advantages. It enables manufacturing of parts with higher accuracy, less production time, and lower costs. Using the example of fused layer modeling (FLM), we present a general approach for the integration of additive manufacturing processes into a numerical control for machine tools. The resulting CNC architecture is presented and its functionality is demonstrated. Its application is beyond the scope of this paper.


2020 ◽  
Vol 110 (11-12) ◽  
pp. 752-757
Author(s):  
Lukas Weiser ◽  
Marco Batschkowski ◽  
Niclas Eschner ◽  
Benjamin Häfner ◽  
Ingo Neubauer ◽  
...  

Die additive Fertigung schafft neue Gestaltungsfreiheiten. Im Rahmen des Prototypenbaus und der Kleinserienproduktion kann das Verfahren des selektiven Laserschmelzens genutzt werden. Die Verwendung in der Serienproduktion ist bisher aufgrund unzureichender Bauteilqualität, langen Anlaufzeiten sowie mangelnder Automatisierung nicht im wirtschaftlichen Rahmen möglich. Das Projekt „ReAddi“ möchte eine erste prototypische Serienfertigung entwickeln, mit der additiv gefertigte Bauteile für die Automobilindustrie wirtschaftlich produziert werden können. Additive manufacturing (AM) offers new freedom of design. The selective laser-powderbed fusion (L-PBF) process can be used for prototyping and small series production. So far, it has not been economical to use it on a production scale due to insufficient component quality, long start-up times and a lack of automation. The project ReAddi aims to develop a first prototype series production to cost-effectively manufacture 3D-printed components for the automotive industry.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Liang Wu ◽  
Stephen Beirne ◽  
Joan-Marc Cabot Canyelles ◽  
Brett Paull ◽  
Gordon G. Wallace ◽  
...  

Additive manufacturing (3D printing) offers a flexible approach for the production of bespoke microfluidic structures such as the electroosmotic pump. Here a readily accessible fused filament fabrication (FFF) 3D printing...


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 617
Author(s):  
Ruben Foresti ◽  
Benedetta Ghezzi ◽  
Matteo Vettori ◽  
Lorenzo Bergonzi ◽  
Silvia Attolino ◽  
...  

The production of 3D printed safety protection devices (SPD) requires particular attention to the material selection and to the evaluation of mechanical resistance, biological safety and surface roughness related to the accumulation of bacteria and viruses. We explored the possibility to adopt additive manufacturing technologies for the production of respirator masks, responding to the sudden demand of SPDs caused by the emergency scenario of the pandemic spread of SARS-COV-2. In this study, we developed different prototypes of masks, exclusively applying basic additive manufacturing technologies like fused deposition modeling (FDM) and droplet-based precision extrusion deposition (db-PED) to common food packaging materials. We analyzed the resulting mechanical characteristics, biological safety (cell adhesion and viability), surface roughness and resistance to dissolution, before and after the cleaning and disinfection phases. We showed that masks 3D printed with home-grade printing equipment have similar performances compared to the industrial-grade ones, and furthermore we obtained a perfect face fit by customizing their shape. Finally, we developed novel approaches to the additive manufacturing post-processing phases essential to assure human safety in the production of 3D printed custom medical devices.


2021 ◽  
Vol 13 (9) ◽  
pp. 4948
Author(s):  
Núria Boix Rodríguez ◽  
Giovanni Formentini ◽  
Claudio Favi ◽  
Marco Marconi

Face masks are currently considered key equipment to protect people against the COVID-19 pandemic. The demand for such devices is considerable, as is the amount of plastic waste generated after their use (approximately 1.6 million tons/day since the outbreak). Even if the sanitary emergency must have the maximum priority, environmental concerns require investigation to find possible mitigation solutions. The aim of this work is to develop an eco-design actions guide that supports the design of dedicated masks, in a manner to reduce the negative impacts of these devices on the environment during the pandemic period. Toward this aim, an environmental assessment based on life cycle assessment and circularity assessment (material circularity indicator) of different types of masks have been carried out on (i) a 3D-printed mask with changeable filters, (ii) a surgical mask, (iii) an FFP2 mask with valve, (iv) an FFP2 mask without valve, and (v) a washable mask. Results highlight how reusable masks (i.e., 3D-printed masks and washable masks) are the most sustainable from a life cycle perspective, drastically reducing the environmental impacts in all categories. The outcomes of the analysis provide a framework to derive a set of eco-design guidelines which have been used to design a new device that couples protection requirements against the virus and environmental sustainability.


Sign in / Sign up

Export Citation Format

Share Document