Actuation-Coordinated Mobile Parallel Robots With Hybrid Mobile and Manipulation Function

2021 ◽  
Author(s):  
Dongming Gan ◽  
Jiaming Fu ◽  
Mo Rastgaar ◽  
Byung-Cheol Min ◽  
Richard Voyles

Abstract Mobile robots with manipulation capability are a key technology that enables flexible robotic interactions, large area covering and remote exploration. This paper presents a novel class of actuation-coordinated mobile parallel robots (ACMPRs) that utilize parallel mechanism configurations and perform hybrid moving and manipulation functions through coordinated wheel actuators. The ACMPRs differ with existing mobile manipulators by their unique combination of the mobile wheel actuators and the parallel mechanism topology through prismatic joint connections. The common motion of the wheels will provide the mobile function while their differentiation will actuate the parallel manipulator function. This new concept reduces the actuation requirement and increases the manipulation accuracy and mobile motion stability through the coordinated and connected wheel actuators comparing with existing mobile parallel manipulators. The relative wheel location on the base frame also enables a reconfigurable base size with variable moving stability on the ground. The basic concept and general type synthesis are introduced and followed by the kinematics and inverse dynamics analysis of a selected three limb ACMPR. A numerical simulation also illustrates the dynamics model and the motion property of the new mobile parallel robot. The work provides a basis for introducing this new class of robots for potential applications in surveillance, industrial automation, construction, transportation, human assistance, medical applications and other operations in extreme environment such as nuclear plants, Mars, etc.

Author(s):  
S Kemal Ider

In planar parallel robots, limitations occur in the functional workspace because of interference of the legs with each other and because of drive singularities where the actuators lose control of the moving platform and the actuator forces grow without bounds. A 2-RPR (revolute, prismatic, revolute joints) planar parallel manipulator with two legs that minimizes the interference of the mechanical components is considered. Avoidance of the drive singularities is in general not desirable since it reduces the functional workspace. An inverse dynamics algorithm with singularity robustness is formulated allowing full utilization of the workspace. It is shown that if the trajectory is planned to satisfy certain conditions related to the consistency of the dynamic equations, the manipulator can pass through the drive singularities while the actuator forces remain stable. Furthermore, for finding the actuator forces in the vicinity of the singular positions a full rank modification of the dynamic equations is developed. A deployment motion is analysed to illustrate the proposed approach.


Author(s):  
Kwun-Lon Ting ◽  
Kuan-Lun Hsu

The paper presents a simple and effective kinematic model and methodology, based on Ting’s N-bar rotatability laws [2629], to assess the extent of the position uncertainty caused by joint clearances for any linkage and manipulators connected with revolute or prismatic pairs. The model is derived and explained with geometric rigor based on Ting’s rotatability laws. The significant contribution includes (1) the clearance link model for P-joint that catches the translation and oscillation characteristics of the slider within the clearance and separates the geometric effect of clearance from the input error, (2) a simple uncertainty linkage model that features a deterministic instantaneous structure mounted on non-deterministic flexible legs, (3) the generality of the method, which is effective for multiloop linkages and parallel manipulators. The discussion is carried out through symmetrically constructed planar eight-bar parallel robots. It is found that the uncertainty region of a three-leg parallel robot is enclosed by a hexagon, while that of its serial counterpart is enclosed by a circle inscribed by the hexagon. A numerical example is also presented. The finding and proof, though only based on three-leg planar 8-bar parallel robots, may have a wider implication suggesting that based on kinematics, parallel robots tends to inherit more position uncertainty than their serial counterparts. The use of more loops in parallel robots cannot fully offset the adverse effect on position uncertainty caused by the use of more joints.


Robotica ◽  
1990 ◽  
Vol 8 (2) ◽  
pp. 105-109 ◽  
Author(s):  
F. Pierrot ◽  
C. Reynaud ◽  
A. Fournier

SummaryThe DELTA parallel robot, designed by an EPFL (Ecole Polytechnique Fédérale de Lausanne) research team, is a mechanical structure which has the advantage of parallel robots and ease of serial robots modeling. This paper presents solutions for a complete modeling of the DELTA parallel robot (direct and inverse kinematics, inverse statics, inverse dynamics), with few arithmetic and trigonometric operations. Our method is based on a satisfactory choice of kinematic parameters and on a few restricting hypotheses for the static and dynamic models. We give some details of each model, we present some computation results and we put the emphasis on some particular points, showing the capabilities of this mechanical structure.


2020 ◽  
Vol 12 (5) ◽  
Author(s):  
Naser Mostashiri ◽  
Jaspreet Dhupia ◽  
Alexander Verl ◽  
John Bronlund ◽  
Weiliang Xu

Abstract Inverse dynamics solution of redundantly actuated parallel robots (RAPRs) requires redundancy resolution methods. In this paper, the Lagrange’s equations of the second kind are used to derive governing equations of a chewing RAPR. Jacobian analysis of the RAPR is presented. As redundancy resolutions, two different optimization cost functions corresponding to specific neuromuscular objectives, which are minimization of effort of the muscles of mastication and temporomandibular joints (TMJs) loads, are used to find the RAPR’s optimized actuation torque distributions. The actuation torques under the influence of experimentally determined dynamic chewing forces on molar teeth reproduced from a separate chewing experiment are calculated for realistic in vitro simulation of typical human chewing. These actuation torques are applied to the RAPR with a distributed-computed-torque proportional-derivative control scheme, allowing the RAPR’s mandible to follow a human subject’s chewing trajectory. TMJs loads are measured by force sensors, which are comparable with the computed loads from theoretical formulation. The TMJs loads for the two optimization cost functions are measured while the RAPR is chewing 3 g of peanuts on its left molars. Maximum and mean of the recorded loads on the left TMJ were higher in both cases. Moreover, the maximum and mean of the recorded loads on both TMJs were smaller for the cost function minimizing the TMJs loads. These results demonstrate validity of the model, suggesting the RAPR as a potential TMJ loads measurement tool to study the chewing characteristics of patients suffering from pain in TMJs.


1995 ◽  
Vol 7 (4) ◽  
pp. 344-352 ◽  
Author(s):  
Karol Miller ◽  
◽  
Boris S. Stevens ◽  
◽  

The term ""Extended Space"" used in this article is hereby defined as a union of the operational and articulation spaces of a manipulator. The advantages in the use of such coordinates (extended space) in the description of DELTA robot is presented here and discussed in some detail. The emerging importance of parallel robots has necessitated an increased sophistication to achieve improved control. A method based on the direct application of the Hamilton's Principle in extended space, has been applied efficiently to solving the inverse problem of dynamics and implemented for real time application in the control law of the direct-drive version of DELTA parallel robot.1-3) The full dynamic model of this robot has been developed herein. The numerical efficiency and other benefits of this approach over the more classical Lagrange and Newton-Euler methods for the inverse dynamics problem solving are also briefly discussed. For similar models, the version obtained by the direct application of Hamilton's principle is found to possess 23% less mathematical operations than for the Lagrangebased model. Frictional effects. being very small in the direct-drive manipulator, are not included in the present Hamilton development but can be handled with a slight modification. Furthermore the acceleration information of the robot are not required as input states to the Hamilton model. The measurement of trajectory tracking performances for different controllers is conducted. The repeatability of the robot trajectory tracking is determined. The improvement obtained in the control algorithm's performance after the Hamilton implementation is proven to be conclusive.


Author(s):  
Hui Yu ◽  
Jinsong Wang ◽  
Guanghong Duan ◽  
Lining Sun

In this paper an optimization method based on the Mechanics of Parallel Robots and orientated on workspace is conducted in the construction of 6-HTRT parallel robot. By analyzing the characteristics of specific workspace and setting up objective functions, optimizations are implemented on the design of parallel robot. As a result of the optimization design, the parallel robot not only figures the minimum overall size of robot structural, but also has workspace unrestricted by the limit range of Hooke joint’s conical angles. The restriction factors on workspace of 6-HTRT parallel robot are reduced thus the algorithm for motion control of the robot is simplified and the performance of the parallel mechanism is improved.


Author(s):  
Saeed Behzadipour ◽  
Robert Dekker ◽  
Amir Khajepour ◽  
Edmon Chan

The growing needs for high speed positioning devices in the automated manufacturing industry have been challenged by robotic science for more than two decades. Parallel manipulators have been widely used for this purpose due to their advantage of lower moving inertia over the conventional serial manipulators. Cable actuated parallel robots were introduced in 1980’s to reduce the moving inertia even further. In this work, a new cable-based parallel robot is introduced. For this robot, the cables are used not only to actuate the end-effector but also to apply the necessary kinematic constraints to provide three pure translational degrees of freedom. In order to maintain tension in the cables, a passive air cylinder is used to push the end-effector against the stationary platform. In addition to low moving inertia, the new design benefits from simplicity and low manufacturing cost by eliminating joints from the robot’s mechanism. The design procedure and the results of experiments will be discussed in the following.


1999 ◽  
Author(s):  
Luc H. Rolland

Abstract Two novel 4-DOF very fast parallel robots were designed. This paper introduces the new parallel mechanism designs which are named the Manta and the Kanuk. In order to reduce manipulator overall costs, the actuator and encoder numbers are minimized to the exact effective degrees-of-freedoms (DOF) which is usually not the case in most parallel robot designs. The robots allow end-effector displacements along the three Cartesian translations and one platform transversal rotation. The two remaining rotations are blocked by the intrinsic mechanical structure including the rotation along the platform normal which is always limited in range. The main advantages are high stiffness through the multiple kinematic chain structure which allow for low mass designs. Moreover, they feature simple mechanical construction. Thus, it shall be possible to achieve very high throughput since high accelerations are feasible. To circumvent the known workspace limitations, the actuators were selected to be prismatic along linear axes. The applications are automated warehouse manipulation, mediatheque manipulation, machine tool tool changers, loading and unloading.


2011 ◽  
Vol 219-220 ◽  
pp. 953-956
Author(s):  
Jin Liang Gong ◽  
Yan Fei Zhang ◽  
Xiu Ting Wei

Redundant parallel robots have been under increasing developments from a theoretical view point as well as for practical applications. Compared with the traditional parallel manipulators, they have such merits of more load, faster speed and higher accuracy. The method about how to build up redundant actuation parallel robot is introduced. Considering that the kinematic joint and limb are basic elements to constitute a proper parallel robot mechanism, special Plücker coordinates is adopted to describe the displacements of the output link of a limb or the robot mechanism. Then the principle for design of the redundant actuation parallel robot mechanisms is presented and example of the 2RRR&2PP parallel robot mechanism is brought forth and analyzed by this method.


Sign in / Sign up

Export Citation Format

Share Document