The Double Seesaw Oscillator in a Windfield: Theory and Experiments

Author(s):  
A. H. P. van der Burgh ◽  
T. I. Haaker ◽  
B. W. van Oudheusden

Abstract In this paper the dynamics of an oscillator with two degrees-of-freedom of a double seesaw type in a windtunnel is studied. Model equations for this aeroelastic oscillator are derived and an analysis of these equations is given for the non-resonant case. A typical result is a (local codimension two) bifurcation which describes the transfer from the unstable equilibrium state to one of the two normal modes of the oscillator. Some experimental results are presented from which on may conclude that more accurate model equations should be developed.

Author(s):  
John H. D. Eland ◽  
Raimund Feifel

Double ionisation of the triatomic molecules presented in this chapter shows an added degree of complexity. Besides potentially having many more electrons, they have three vibrational degrees of freedom (three normal modes) instead of the single one in a diatomic molecule. For asymmetric and bent triatomic molecules multiple modes can be excited, so the spectral bands may be congested in all forms of electronic spectra, including double ionisation. Double photoionisation spectra of H2O, H2S, HCN, CO2, N2O, OCS, CS2, BrCN, ICN, HgCl2, NO2, and SO2 are presented with analysis to identify the electronic states of the doubly charged ions. The order of the molecules in this chapter is set first by the number of valence electrons, then by the molecular weight.


2000 ◽  
Vol 10 (06) ◽  
pp. 1367-1381 ◽  
Author(s):  
W. SZEMPLIŃSKA-STUPNICKA ◽  
A. ZUBRZYCKI ◽  
E. TYRKIEL

In this paper, we study effects of the secondary bifurcations in the neighborhood of the primary codimension-two bifurcation point. The twin-well potential Duffing oscillator is considered and the investigations are focused on the new scenario of destruction of the cross-well chaotic attractor. The phenomenon belongs to the category of the subduction scenario and relies on the replacement of the cross-well chaotic attractor by a pair of unsymmetric 2T-periodic attractors. The exploration of a sequence of accompanying bifurcations throws more light on the complex phenomena that may occur in the neighborhood of the primary codimension-two bifurcation point. It shows that in the close vicinity of the point there appears a transition zone in the system parameter plane, the zone which separates the two so-far investigated scenarios of annihilation of the cross-well chaotic attractor.


1960 ◽  
Vol 64 (599) ◽  
pp. 697-699 ◽  
Author(s):  
R. P. N. Jones ◽  
S. Mahalingam

The Rayleigh-Ritz method is well known as an approximate method of determining the natural frequencies of a conservative system, using a constrained deflection form. On the other hand, if a general deflection form (i.e. an unconstrained form) is used, the method provides a theoretically exact solution. An unconstrained form may be obtained by expressing the deflection as an expansion in terms of a suitable set of orthogonal functions, and in selecting such a set, it is convenient to use the known normal modes of a suitably chosen “ basic system.” The given system, whose vibration properties are to be determined, can then be regarded as a “ modified system,” which is derived from the basic system by a variation of mass and elasticity. A similar procedure has been applied to systems with a finite number of degrees of freedom. In the present note the method is applied to simple non-uniform beams, and to beams with added masses and constraints. A concise general solution is obtained, and an iteration process of obtaining a numerical solution is described.


Author(s):  
E. Pesheck ◽  
C. Pierre ◽  
S. W. Shaw

Abstract Equations of motion are developed for a rotating beam which is constrained to deform in the transverse (flapping) and axial directions. This process results in two coupled nonlinear partial differential equations which govern the attendant dynamics. These equations may be discretized through utilization of the classical normal modes of the nonrotating system in both the transverse and extensional directions. The resultant system may then be diagonalized to linear order and truncated to N nonlinear ordinary differential equations. Several methods are used to determine the model size necessary to ensure accuracy. Once the model size (N degrees of freedom) has been determined, nonlinear normal mode (NNM) theory is applied to reduce the system to a single equation, or a small set of equations, which accurately represent the dynamics of a mode, or set of modes, of interest. Results are presented which detail the convergence of the discretized model and compare its dynamics with those of the NNM-reduced model, as well as other reduced models. The results indicate a considerable improvement over other common reduction techniques, enabling the capture of many salient response features with the simulation of very few degrees of freedom.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1138 ◽  
Author(s):  
Jianwang Shao ◽  
Tao Zeng ◽  
Xian Wu

As a new approach to passive noise control in low frequency domain, the targeted energy transfer (TET) technique has been applied to the 3D fields of acoustics. The nonlinear membrane absorber based on the TET can reduce the low frequency noise inside the 3D acoustic cavity. The TET phenomenon inside the 3D acoustic cavity has firstly investigated by a two degrees-of-freedom (DOF) system, which is comprised by an acoustic mode and a nonlinear membrane without the pre-stress. In order to control the low frequency broadband noise inside 3D acoustic cavity and consider the influence of the pre-stress for the TET, a general model of the system with several acoustic modes of 3D acoustic cavity and one nonlinear membrane is built and studied in this paper. By using the harmonic balance method and the numerical method, the nonlinear normal modes and the forced responses are analyzed. Meanwhile, the influence of the pre-stress of the nonlinear membrane for the TET is investigated. The desired working zones of the nonlinear membrane absorber for the broadband noise are investigated. It can be helpful to design the nonlinear membrane according the dimension of 3D acoustic cavity to control the low frequency broadband noise.


In considering the vibrational properties of a crystal, a rigorous finite transformation of the particle displacements from their reference configuration is introduced. This transformation shows that an arbitrary set of such displacements may be regarded as made up of a rotation, a translation, a homogeneous deformation of the reference configuration, and a set of inhomogeneous deformational orthogonal modes. For a three-dimensional crystal, there are 3 N – 12 such inhomogeneous modes, which, in the limit of a large crystal can be considered wave-like. In the usual treatment beginning with the cyclic boundary conditions, 3 N wave-like modes are assumed and rotational displacements, for example, must be ignored. The present treatment accounts satisfactorily for all degrees of freedom, including rotational. Because of the non-singular nature of the above transformation, the transformation of the above modes to the normal modes proves that some normal modes are admixtures of inhomogeneous and homogeneous modes and therefore cannot possibly satisfy the Born cyclic boundary conditions. The vibrational hamiltonian is shown to contain the elastic energy and the elastic–phonon interaction terms as well as the usual wave energies. In the limit of a large crystal, it is shown that, for all processes involving phonons, the homogeneous coordinates may be regarded as effectively static, in much the same way as, in a simple theory of the Earth–Sun motion, the Sun, because of its large inertial mass, is considered stationary and its position coordinates static. The above transformation enables the case of a crystal, free or confined in a container, to be satisfactorily discussed. It is proved that the quantum mean value of the tensor whose independent elements define the homogeneous coordinates is, in the limit of a large crystal, equal to the strain tensor of the container, when it is being used to deform the crystal by being itself homogeneously deformed. A rigorous quantum treatment of crystal elastic constants may then be developed. For practical use, the 3 N – 12 inhomogeneous modes may be assumed to obey the cyclic boundary conditions. Thus a satisfactory complete basic treatment of lattice dynamics may be given which accounts for all degrees of freedom including rotation.


Sign in / Sign up

Export Citation Format

Share Document