A Model for the Effect of Velocity on Erosion of N80 Steel Tubing due to the Normal Impingement of Solid Particles

1992 ◽  
Vol 114 (1) ◽  
pp. 54-64 ◽  
Author(s):  
D. P. Chase ◽  
E. F. Rybicki ◽  
J. R. Shadley

As part of a combined experimental and computational study of erosion for gas and oil production conditions, a semi-empirical model has been developed to predict erosion ratio behaviors of metals due to solid particle impingement. One use of the model will be to reduce the total number of experiments needed to characterize erosion behavior. The model represents material property information associated with both the target material and the impinging particles, as well as impingement speed. Five different models are examined in terms of ability to predict erosion ratio behavior as a function of impingement speed. The model selected is based on a conservation of energy formulation and fracture mechanics considerations to predict the amount of material removed due to solid particle impingement. The resulting equation to predict the erosion ratio for a given particle size contains one unknown coefficient which is determined through comparison with experimental data. Illustrative examples are presented for data for two different sizes of glass bead solid particles in an oil carrier fluid impinging on an API (American Petroleum Institute) N80 grade steel target at an impingement angle 90 deg to the target surface. Using erosion data at one impingement speed to determine the unknown coefficient, the model was used to predict erosion behavior at a range of other speeds. Good agreement between the erosion ratio data and the values predicted by the model were found for two solid particle sizes. Recommendations for expanding the capabilities of the model are pointed out.

Author(s):  
John M. Furlan ◽  
Venkat Mundla ◽  
Jaikrishnan Kadambi ◽  
Nathaniel Hoyt ◽  
Robert Visintainer ◽  
...  

In the design of slurry transport equipment, the effects of solid particle concentration on hydraulic performance and wear have to be considered. This study involves examining the acoustic properties of slurry flows such as velocity, backscatter and attenuation as a function of volume fraction of solid particles. Ultrasound A-mode imaging method is developed to obtain particle concentration in a flow of soda lime glass particles (diameter of 200 micron) and water slurry in a 1″ diameter pipe. Based on the acoustic properties of the slurry a technique is developed to measure local solid particle concentrations. The technique is used to obtain concentration profiles in homogeneous (vertical flow) and non-homogeneous (horizontal flow) slurry flows with solid particle concentrations ranging from 1–10% by volume. The algorithm developed utilizes the power spectrum and attenuation measurements obtained from the homogeneous loop as calibration data in order to obtain concentration profiles in other (i.e. non-homogenous) flow regimes. A computational study using FLUENT was performed and a comparison is made with the experimental results. A reasonable agreement between the experimental and computational results is observed.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 286
Author(s):  
Shoya Mohseni-Mofidi ◽  
Eric Drescher ◽  
Harald Kruggel-Emden ◽  
Matthias Teschner ◽  
Claas Bierwisch

Solid particle erosion inevitably occurs if a gas–solid or liquid–solid mixture is in contact with a surface, e.g., in pneumatic conveyors. Having a good understanding of this complex phenomenon enables one to reduce the maintenance costs in several industrial applications by designing components that have longer lifetimes. In this paper, we propose a methodology to numerically investigate erosion behavior of ductile materials. We employ smoothed particle hydrodynamics that can easily deal with large deformations and fractures as a truly meshless method. In addition, a new contact model was developed in order to robustly handle contacts around sharp corners of the solid particles. The numerical predictions of erosion are compared with experiments for stainless steel AISI 304, showing that we are able to properly predict the erosion behavior as a function of impact angle. We present a powerful tool to conveniently study the effect of important parameters, such as solid particle shapes, which are not simple to study in experiments. Using the methodology, we study the effect of a solid particle shape and conclude that, in addition to angularity, aspect ratio also plays an important role by increasing the probability of the solid particles to rotate after impact. Finally, we are able to extend a widely used erosion model by a term that considers a solid particle shape.


2021 ◽  
Vol 33 (2) ◽  
Author(s):  
Paolo Capobianchi ◽  
Marcello Lappa

AbstractSystems of solid particles in suspension driven by a time-periodic flow tend to create structures in the carrier fluid that are reminiscent of highly regular geometrical items. Within such a line of inquiry, the present study provides numerical results in support of the space experiments JEREMI (Japanese and European Research Experiment on Marangoni flow Instabilities) planned for execution onboard the International Space Station. The problem is tackled by solving the unsteady non-linear governing equations for the same conditions that will be established in space (microgravity, 5 cSt silicone oil and different aspect ratios of the liquid bridge). The results reveal that for a fixed supporting disk radius, the dynamics are deeply influenced by the height of the liquid column. In addition to its expected link with the critical threshold for the onset of instability (which makes Marangoni flow time-periodic), this geometrical parameter can have a significant impact on the emerging waveform and therefore the topology of particle structures. While for shallow liquid bridges, pulsating flows are the preferred mode of convection, for tall floating columns the dominant outcome is represented by rotating fluid-dynamic disturbance. In the former situation, particles self-organize in circular sectors bounded internally by regions of particle depletion, whereas in the latter case, particles are forced to accumulate in a spiral-like structure. The properties of some of these particle attractors have rarely been observed in earlier studies concerned with fluids characterized by smaller values of the Prandtl number.


Author(s):  
Shuai Meng ◽  
Qian Wang ◽  
Rui Yang

The phenomenon of impaction between liquid droplets and solid particles is involved in many scientific problems and engineering applications, such as impaction between sprayed droplet and solid particles in limestone injection desulfurization system and the collision between a droplet of the liquid to be granulated and a seed particle in fluidized bed spray granulation process. There are a lot of factors affected this phenomenon: droplet and particle size, momentum of both liquid droplet and solid particles, materials, surface conditions of the solid particles and so on. However the experimental or numerical researches have been done mostly pay attention to Specific application or process, so the impaction phenomenon has not been through studied, for example how different factors affected the impaction process with its effect on different applications. This paper focuses on the basic issue of interaction between droplet and solid particles. Three main factors were considered: ratio of diameter between the droplet and solid particle, relative velocity and the surface tension (including the contact angle between droplet and solid particle). All the study is based on simulation using SPH (smoothed particle hydrodynamics) method, and the surface tension is simulated by particle-particle interaction.


2017 ◽  
Vol 139 (8) ◽  
Author(s):  
Sadia Siddiqa ◽  
Naheed Begum ◽  
M. A. Hossain ◽  
Rama Subba Reddy Gorla

This article is concerned with the class of solutions of gas boundary layer containing uniform, spherical solid particles over the surface of rotating axisymmetric round-nosed body. By using the method of transformed coordinates, the boundary layer equations for two-phase flow are mapped into a regular and stationary computational domain and then solved numerically by using implicit finite difference method. In this study, a rotating hemisphere is used as a particular example to elucidate the heat transfer mechanism near the surface of round-nosed bodies. We will investigate whether the presence of dust particles in carrier fluid disturbs the flow characteristics associated with rotating hemisphere or not. A comprehensive parametric analysis is presented to show the influence of the particle loading, the buoyancy ratio parameter, and the surface of rotating hemisphere on the numerical findings. In the absence of dust particles, the results are graphically compared with existing data in the open literature, and an excellent agreement has been found. It is noted that the concentration of dust particles’ parameter, Dρ, strongly influences the heat transport rate near the leading edge.


1964 ◽  
Vol 19 (2) ◽  
pp. 231-239 ◽  
Author(s):  
F. Winterberg

In this paper it is shown that temperatures up to 108°K and under densities of the order 1 g/cm3 are attainable in liquid tritium-deuterium by the impact shock waves of small solid particles accelerated up to velocities of some 107 cm/s in heavy particle accelerators.The high temperatures occur in a focussed particle beam. It is shown that under feasible conditions, the particle beam will generate in the target material a shock wave of the required strength. The particles are charged electrically up to the limit of mechanical breakup and then are accelerated in linear particle accelerators to the required velocities.In order to cut down losses by Bremsstrahlung radiation, the particles must consist of low Z-value material. The most promissing substances in this regard are lithium and beryllium. The "guillotine factor” is of significance at high densities and reduces the Bremsstrahlung losses by a factor of about 1/3.The attainable temperatures are high enough to reach the lowest ignition temperatures for thermonuclear reactions.Apart from the interesting prospect of high temperature, high density experiments, the possibility cannot be excluded to ignite by this method a small fusion explosion of controllable size.


2021 ◽  
Author(s):  
Vojtech Patocka ◽  
Nicola Tosi ◽  
Enrico Calzavarini

<p>We evaluate the equilibrium concentration of a thermally convecting suspension that is cooled from above and in which<br>solid crystals are self-consistently generated in the thermal boundary layer near the top. In a previous study (Patočka et<br>al., 2020), we investigated the settling rate of solid particles suspended in a highly vigorous (Ra = 10<sup>8</sup> , 10<sup>10</sup>, and 10<sup>12</sup> ),<br>finite Prandtl number (Pr = 10, 50) convection. In this follow-up study we additionally employ the model of crystal<br>generation and growth of Jarvis and Woods (1994), instead of using particles with a predefined size and density that are<br>uniformly injected into the carrier fluid.</p><p>We perform a series of numerical experiments of particle-laden thermal convection in 2D and 3D Cartesian geometry<br>using the freely available code CH4 (Calzavarini, 2019). Starting from a purely liquid phase, the solid fraction gradually<br>grows until an equilibrium is reached in which the generation of the solid phase balances the loss of crystals due to<br>sedimentation at the bottom of the fluid. For a range of predefined density contrasts of the solid phase with respect to<br>the density of the fluid (ρ<sub>p</sub> /ρ<sub>f</sub> = [0, 2]), we measure the time it takes to reach such equilibrium. Both this time and<br>the equilibrium concentration depend on the average settling rate of the particles and are thus non-trival to compute for<br>particle types that interact with the large-scale circulation of the fluid (see Patočka et al., 2020).</p><p>We apply our results to the cooling of a large volume of magma, spanning from a large magma chamber up to a<br>global magma ocean. Preliminary results indicate that, as long as particle re-entrainment is not a dominant process, the<br>separation of crystals from the fluid is an efficient process. Fractional crystallization is thus expected and the suspended<br>solid fraction is typically small, prohibiting phenomena in which the feedback of crystals on the fluid begins to govern the<br>physics of the system (e.g. Sparks et al, 1993).</p><p>References<br>Patočka V., Calzavarini E., and Tosi N.(2020). Settling of inertial particles in turbulent Rayleigh-Bénard convection.<br>Physical Review Fluids, 26(4) 883-889.</p><p>Jarvis, R. A. and Woods, A. W.(1994). The nucleation, growth and settling of crystals from a turbulently convecting<br>fluid. J. Fluid. Mech, 273 83-107.</p><p>Sparks, R., Huppert, H., Koyaguchi, T. et al (1993). Origin of modal and rhythmic igneous layering by sedimentation in<br>a convecting magma chamber. Nature, 361, 246-249.</p><p>Calzavarini, E (2019). Eulerian–Lagrangian fluid dynamics platform: The ch4-project. Software Impacts, 1, 100002.</p>


Author(s):  
Deyin Gu ◽  
Fenghui Zhao ◽  
Xingmin Wang ◽  
Zuohua Liu

Abstract The solid-liquid mixing characteristics in a stirred tank with pitched blade impellers, dislocated impellers, and dislocated guide impellers were investigated through using CFD simulation. The effects of impeller speed, impeller type, aperture ratio, aperture length, solid particle diameter and initial solid holdup on the homogeneity degree in the solid-liquid mixing process were investigated. As expected, the solid particle suspension quality was increased with an increase in impeller speed. The dislocated impeller could reduce the accumulation of solid particles and improve the cloud height compared with pitched blade impeller under the same power consumption. The dislocated guide impeller could enhance the solid particles suspension quality on the basis of dislocated impeller, and the optimum aperture ratio and aperture length of dislocated guide impeller were 12.25% and 7 mm, respectively, in the solid-liquid mixing process. Smaller solid particle diameter and lower initial solid holdup led to higher homogeneity degree of solid-liquid mixing system. The dislocated guide impeller could increase solid particle integrated velocity and enhance turbulent intensity of solid-liquid two-phase compared with pitched blade impeller and dislocated impeller under the same power consumption.


Sign in / Sign up

Export Citation Format

Share Document