Cost and Performance Analysis of a Solar Thermal Cooling Project

Author(s):  
Joel K. Dickinson ◽  
Robert O. Hess ◽  
Jeff Seaton ◽  
Henny van Lambalgen ◽  
Andrea L. Burnham

This paper presents the findings of a field study and performance analysis of a solar thermal cooling system located in Phoenix, Arizona. This system is compared to conventional air conditioning equipment, as well as conventional air conditioning equipment powered by solar electric (photovoltaics). The design of the solar cooling system, which incorporates solar-generated hot water and a single-stage absorption chiller, is discussed. Capital and maintenance cost estimates, including auxiliary electric load and water, are also provided. Operational problems are reviewed together with the design modifications that were required to resolve these issues. Performance of the system and the individual components was determined based on field data collected. Using this data the solar cooler energy savings over conventional air conditioning equipment was determined (Figure 1).

2015 ◽  
Vol 780 ◽  
pp. 75-80 ◽  
Author(s):  
Nasruddin ◽  
Aldi Suyana ◽  
Budihardjo ◽  
Arnas

The solar thermal cooling system is expected to replace the utilization of conventional cooling system, particularly the vapour compression system. This cooling system is power-efficient, refrigerant environmentally friendly and able to use the abundant potential of solar energy. Hence, the optimization of this cooling system is necessary in order to obtain the best performance. For that purpose, this study focus on the simulation phase of the solar thermal cooling system utilization in MRC FTUI building as well as the optimization of solar collector applying EnergyPlus and GenOpt software. The position and the tilt angle of solar collector set as parameter study to gain the best performance of solar collector to produce hot water, which will be used as energy source in the absorption chiller. Finally, the optimum position and the optimum tilt angle every month in a year were obtained from this study.


2019 ◽  
Vol 27 (03) ◽  
pp. 1950023
Author(s):  
M. Idrus Alhamid ◽  
Nasruddin ◽  
Arnas Lubis ◽  
Kiyoshi Saito ◽  
Hajime Yabase ◽  
...  

The objective of this study is to analyze all the energy used in the solar cooling system in Universitas Indonesia. This system uses three energies at the same time, namely, solar, gas and electricity energies, which are used to provide a required cooling capacity from the mechanical research center (MRC) building in Universitas Indonesia. The single–double-effect absorption chiller is the main component of the solar thermal cooling system to provide the chilled water that is circulated between the system and MRC building. In this system, heat from solar energy is absorbed by the evacuated tube solar collector and then transferred to the hot water that is used to generate vapor together with the gas at the absorption machine. On the other hand, electricity is mostly consumed by the pumps to circulate the hot, cooling and chilled water, also the working fluids inside the absorption machine. Finally, all the energies used to create a thermal comfort zone in the MRC building based on the Indonesia weathers are reported in this paper.


2021 ◽  
Vol 11 (2) ◽  
pp. 511
Author(s):  
Aiman Albatayneh ◽  
Mustafa Jaradat ◽  
Murad Al-Omary ◽  
Maha Zaquot

When they were first conceived, solar cooling systems were designed to be cost-effective and environmentally safe alternatives for the majority of the developing nations that are characterised by their hot climates in contrast with the traditional air conditioning systems powered by electricity that is produced from fossil fuel resources. Nevertheless, developments in photovoltaic (PV) and air-conditioning technologies have impacted on the prospects of solar cooling systems. This study examined two different options: a coupled PV and air conditioner system and a solar cooling system (absorption chillers where thermal energy is provided by solar collectors) for a specific developing country located in the Eastern Mediterranean region whose climate is hot and dry (Jordan). The cooling system comprised a pair of cooled multistage compression, both of which were 700 kW, while the PV system’s size was 2.1 MWp, the utility grid connection was a 0.4 kV 50 Hz net meter (2 m) and it was anticipated that 3300 MWh/year would be generated. The solar cooling system operated at a maximum coefficient of performance (COP) of 0.79 and had an actual recorded COP of 0.32 on the site; when the electricity tariff of $0.1/kWh was considered, the respective levelised cost of energy (LCOE) values were $0.9/kWh and $2.35/kWh respectively. The findings indicate that the initial costs for the solar thermal cooling system and the PV system were approximately $3.150M and $3M, respectively. The current value of future cash payments when discounts of 6% per year were applied to the payments for the combination of PV and air conditioning was about $9,745,000, whereas the solar thermal cooling system will not reach the breakeven point at negative $1,730,000. It is clear the absorption chiller did not display economic feasibility, whereas the value for the coupled PV and air-conditioning systems was under $0.05/kWh. In addition to the extensive maintenance needs, the reduced COP and the practicality and feasibility of the solar thermal cooling systems mean these kinds of technologies are under significant pressure to remain competitive when faced with the development of new air conditioning and PV technologies.


2019 ◽  
Vol 196 ◽  
pp. 214-226 ◽  
Author(s):  
Sergio Pintaldi ◽  
Jiaming Li ◽  
Subbu Sethuvenkatraman ◽  
Stephen White ◽  
Gary Rosengarten

2015 ◽  
Vol 780 ◽  
pp. 81-86 ◽  
Author(s):  
Nasruddin ◽  
K. Rahadian ◽  
M.I. Alhamid ◽  
Arnas

Solar Thermal Cooling System with its absorption cycle is expected to replace the conventional air conditioning system with vapor compression cycle because it is more efficient in terms of cost and energy. However, due to the heat of the sun is not always stable, the system needs to be equipped with a backup energy source, one of which is CNG. In the Manufacturing Research Center building, the lack of facilities that support availability of CNG causes large operational cost. Therefore, optimization efforts with the aim to reduce operational cost are needed. Simulation and optimization performed with EnergyPlus and GenOpt. The conclusion is that the installation of 187.5 kW electric tankless water heater is able to reduce total operational cost by 34.65% compared to system that uses combination of solar thermal and CNG and 49.69% compared with system that uses only CNG.


Author(s):  
N. Fumo ◽  
V. Bortone ◽  
J. C. Zambrano

The Energy Information Administration of the United States Department of Energy projects that more than 80% of the energy consumption of the U.S. by 2035 will come from fossil fuels. This projection should be the fuel to promote projects related to renewable energy in order to reduce energy consumption from fossil fuels to avoid their undesirable consequences such as carbon dioxide emissions. Since solar radiation match pretty well building cooling demands, solar cooling systems will be an important factor in the next decades to meet or exceed the green gases reduction that will be demanded by the society and regulations in order to mitigate environmental consequences such as global warming. Solar energy can be used as source of energy to produce cooling through different technologies. Solar thermal energy applies to technology such as absorption chillers and desiccant cooling, while electricity from solar photovoltaic can be used to drive vapor compression electric chillers. This study focuses on the comparison of a Solar Thermal Cooling System that uses an absorption chiller driven by solar thermal energy, and a Solar Photovoltaic Cooling System that uses a vapor compression system (electric chiller) driven by solar electricity (solar photovoltaic system). Both solar cooling systems are compared against a standard air cooled cooling system that uses electricity from the grid. The models used in the simulations to obtain the results are described in the paper along with the parameters (inputs) used. Results are presented in two figures. Each figure has one curve for the Solar Thermal Cooling System and one for the Solar Photovoltaic Cooling System. One figure allows estimation of savings calculated based the net present value of energy consumption cost. The other figure allows estimating primary energy consumption reduction and emissions reduction. Both figures presents the result per ton of refrigeration and as a function of area of solar collectors or/and area of photovoltaic modules. This approach to present the result of the simulations of the systems makes these figures quite general. This means that the results can be used to compare both solar cooling systems independently of the cooling demand (capacity of the system), as well as allow the analysis for different sizes of the solar system used to harvest the solar energy (collectors or photovoltaic modules).


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Olof Hallström

In order to reach the targets on emissions set by the European Commission, both new and existing buildings must reduce their fossil fuel inputs. Solar thermal cooling supplying on-site renewable heating and cooling could potentially contribute toward this goal. In this paper, a novel concept for solar thermal cooling providing efficient coproduction of cooling and heating based on sorption integrated vacuum tube collectors is proposed. A prototype collector has been constructed and tested in a solar laboratory based on a method developed specifically for sorption integrated collectors. From the test results, the key performance parameters have been determined and used to calibrate a mathematical model for trnsys environment. System simulation has been conducted to optimize the collector and sorption module configuration by performing a parametric study where different vacuum tube center–center (C–C) distances and sorption module designs are tested for a generic hotel in Ankara, Turkey. The parametric study showed that the heating and cooling output per year can be as high as 1000 kWh/m2 for solar fractions above 50%, and that the output per sorption module compared to the prototype can more than double with an optimized design. Furthermore, cooling conversion efficiencies defined as total cooling output per total solar insolation can be as high as 26% while simultaneously converting 35–40% of the incident solar energy into useful hot water.


Sign in / Sign up

Export Citation Format

Share Document