Hybrid Distributed Power Generation for an Isolated Rural Settlement in Masirah Island, Oman

Author(s):  
Saleh Al Saadi ◽  
Moncef Krarti

This paper summarizes the findings from a feasibility study of using renewable energy sources in combination with conventional power systems to meet the electrical requirements for an isolated island of Masirah in Oman. The study has been conducted to determine the best hybrid system to generate electrical energy needed for a small community of 500 residential buildings. A series of a simulation analyses have been carried out to evaluate and optimize different distribution technologies including photovolatics, wind and diesel for electrical generation in combination with storage batteries. It was found that the cost of energy could be reduced by as much as 48% compared to the cost for the baseline generation system currently used in the Masirah Island (i.e. diesel-driven generators). In particular, it was found that wind turbines in combination with storage batteries have a great impact in reducing the cost of generating electrical energy for the residential community. Moreover, solar PV panels were found unattractive under the current diesel price rates but could potentially become viable if the diesel prices increase. The paper outlines an optimal design for generating electricity for the community at lowest cost while minimizing carbon emissions.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3360
Author(s):  
Tefera Mekonnen ◽  
Ramchandra Bhandari ◽  
Venkata Ramayya

Currently, difficulties such as the depletion of fossil fuel resources and the associated environmental pollution have driven the rise of other energy systems based on green energy sources. In this research, modeling and a viability study of grid-connected and islanded photovoltaic (PV) power systems for supplying the residential load in Mekelle City, Ethiopia, were carried out considering the country’s emerging utility tariff plan for 2021 and beyond. The technical viability of the proposed supply option was analyzed using PVGIS, PVWatts and HOMER Pro tool, while the economic and environmental optimization aspects were carried out using HOMER Pro. Sensitivity analyses and output comparisons among the three renewable energy simulation tools are presented. The results showed that under the consideration of an incremental electricity tariff plan (up to 2021), the analyzed cost of energy of the grid/PV system is around 12% lower than the utility grid tariff. Moreover, we also found that by taking the continuous global solar PV cost reduction into account, the cost of energy of the modeled islanded operation of solar PV power units totally broke the grid tariff in Ethiopia after 2029 based on the tariff for 2021 and well before with the expected escalation of the grid tariff on an annual basis. The technical performance of the system realized through PVGIS and PVWatts was almost comparable to the HOMER Pro outputs. Thus, this investigation will offer a clear direction to the concerned target groups and policy developers in the evolution of PV power supply options throughout the technically viable locations in the country.


2021 ◽  
Vol 6 (4) ◽  
pp. 22-29
Author(s):  
Onyinyechi A. Uwaoma ◽  
Jonas N. Emechebe ◽  
Muhammed Uthman ◽  
Omotayo Oshiga ◽  
Samuel Olisa

This research paper focuses on modelling and simulation of 330 KV, 600 MW Shiroro Substation in the DIgSILENT Environment for the integration of Hybrid Solar PV – Hydro System to improve power supply in the Federal Capital Territory (FCT) of Abuja, Nigeria. A hybrid energy system is a system that combines multiple types of energy generations to satisfy the demand of the users effectively and efficiently. The Solar Photovoltaic (PV)/Hydro hybrid system consists of electrical energy generated from solar PV and hydro energy. Effect of environmental issues, reduction of fossil fuels in addition to its high cost have actively encouraged interest in great integration of renewable energy sources in power systems. This work capitalized on the possibilities of harnessing commercial solar energy and feeding it to the National grid through a nearby 330 KV substation at Shiroro Dam. The simulation is carried out in DIgSILENT (Power factory) environment. The Shiroro 16 kV, 330 kV, 600 MW Transmission Lines are modelled, and results of simulations of the five bus bars (Jebba, Shiroro, Gwagwalada, Katampe and Kaduna) voltages directly connected to Shiroro Network are: 331.8kV, 331.7 kV, 329.3 kV, 325.6 kV and 332.2 kV, respectively. All the values are within the Operational and Statutory Limits of the National Grid Code.


2018 ◽  
Vol 8 (5) ◽  
pp. 3421-3426 ◽  
Author(s):  
F. Chermat ◽  
M. Khemliche ◽  
A. E. Badoud ◽  
S. Latreche

This work aims to consider the combination of different technologies regarding energy production and management with four possible configurations. We present an energy management algorithm to detect the best design and the best configuration from the combination of different sources. This combination allows us to produce the necessary electrical energy for supplying habitation without interruption. A comparative study is conducted among the different combinations on the basis of the cost of energy, diesel consumption, diesel price, capital cost, replacement cost, operation, and maintenance cost and greenhouse gas emission. Sensitivity analysis is also performed.


Author(s):  
А.Ю. Боташев ◽  
А.А. Мусаев

Одной из разновидностей устройств, осуществляющих импульсные методы обработки давлением, являются двухкамерные устройства для листовой штамповки, использующие в качестве энергоносителя газовоздушные топливные смеси. Подача сжатого воздуха в камеру сгорания в рассматриваемом двухкамерном устройстве для листовой штамповки осуществляется компрессором. Проведен анализ термодинамических процессов, протекающих в камере сгорания и рабочем цилиндре двухкамерного устройства для листовой штамповки. При этом установлено, что энергия, затрачиваемая на работу компрессора, составляет около 45% от энергии, выделяющейся в камере сгорания. Получена зависимость для определения термодинамического КПД двухкамерных устройств для листовой штамповки, величина его составляет около 0,25. Установлено, что энергоэффективность двухкамерных устройств не уступает энергоэффективности традиционного штамповочного оборудования, при этом затраты на энергоносители двухкамерных устройств ниже за счет использования дешевого энергоносителя. В двухкамерном штамповочном устройстве для листовой штамповки электрическая энергия, используемая на работу компрессора, составляет менее 1/3 общей потребляемой энергии устройства. Поэтому при прочих равных условиях расходы на энергоносители будут значительно меньше, чем в штамповочном оборудовании, работающем на электрическом токе One of the types of devices that carry out pulse methods of pressure treatment are two-chamber devices for sheet stamping, using gas-air fuel mixtures as an energy carrier. The supply of compressed air to the combustion chamber in the considered two-chamber device for sheet stamping is carried out by a compressor. We carried out the analysis of thermodynamic processes taking place in the combustion chamber and the working cylinder of a two-chamber device for sheet stamping. We found that the energy spent on the operation of the compressor is about 45% of the energy released in the combustion chamber. We obtained the dependence for determining the thermodynamic efficiency of two-chamber devices for sheet stamping; its value is about 0.25. We established that the energy efficiency of two-chamber devices is not inferior to the energy efficiency of traditional stamping equipment, while the energy costs of two-chamber devices are lower due to the use of a cheap energy carrier. In a two-chamber die-forging device for sheet metal stamping, the electrical energy used to operate the compressor is less than 1/3 of the total energy consumption of the device. Therefore, all other things being equal, the cost of energy carriers will be significantly less than in stamping equipment operating on electric current


2015 ◽  
Vol 5 (1) ◽  
pp. 4 ◽  
Author(s):  
Clement Ehimika Ohireime Onime ◽  
James Uhomoibhi ◽  
Ermanno Pietrosemoli

It is becoming increasingly important to include information about power generation from renewable energy sources in the training of electrical engineers. Solar energy is arguably the most common renewable energy source in use today. Providing practical hands-on training on solar energy power generation today requires the use of photovoltaic panel devices which are used for transforming solar energy into electrical energy. In many developing countries, practical hands-on training on solar power generation is limited due to the cost of photovoltaic panel devices and so the training consists of theoretical and tutorial classes sometimes supported by remote and virtual laboratories. This paper presents an augmented virtuality tool where real-time information from a mobile device’s sensors is used directly within a virtual or computer generated environment. The tool provides a practical context for hands-on tutorial exercises on solar energy power generation.


Author(s):  
Christophe Savard ◽  
Anni Nikulina ◽  
Céline Mécemmène ◽  
Elizaveta Mokhova

Global warming is causing a major ice retreat from the North Pole. From now on, this retreat allows almost permanent movement between East and West off the coast of the Russian Federation along the Northern Sea Route (NSR). For a long time, navigators have been trying to use this route which significantly reduced the distance between continents. The amount of freight that currently travels on the NSR will inevitably increase in the coming years. To reduce environmental risks, one possible option is not to supply ships with heavy fuel oil. The ships could then be electrically powered and navigate in stages from one port to another along the route to refuel for energy. This electrical energy can be produced on site from renewable energy sources. In this article, a first feasibility analysis is outlined, taking into account the tonnage constraints for navigating on a possible route for the NSR, the cost of energy production and the possible location of several ports of call. Under current economic conditions, the solution would not be profitable as it stands, but should become so at a later stage, which justifies starting to think about a future full electrification of navigation on the NSR, which will also contribute to the economic development of the Russian Federation northernmost regions.


2016 ◽  
Vol 31 (3) ◽  
pp. 259
Author(s):  
Arionaldo De Sá Júnior ◽  
Jacinto de Assunção Carvalho

Objetivou-se com a realização deste trabalho, estimar o custo com energia elétrica e à diesel para aplicação de 1 milímetro de lâmina de irrigação em uma área de 1 hectare. O grupo tarifário considerado foi o “B” para baixa tensão e subgrupo “B2 - Rural”. Os valores tarifários aplicados foram obtidos na Companhia energética de Minas Gerais – CEMIG. O valor adotado para o diesel foi respectivo à média observada na região sul de Minas Gerais no segundo semestre de 2012. Para efeito de cálculos, os rendimentos globais do conjunto motobomba e alturas manométricas totais adotadas foram, respectivamente; 60%, 65%, 70%, 75% e 10, 25, 75, 100, 125, 150, 175 e 200 m.c.a. Para o cálculo do custo total com a aplicação da lâmina de 1mm ha-1 foi considerado que o custo com a energia na atividade de irrigação representa 65% e 75% para elétrica e diesel, respectivamente. Os resultados obtidos mostram um crescimento linear dos custos com energia com o aumento da altura manométrica total. A utilização de sistemas motobomba mais eficientes reduz o custo com energia elétrica na ordem de 7% a 20% e diesel entre 4% a 16%, para as situações propostas.Em todos os casos a energia elétrica é mais favorável com relação ao custo.Palavras-chave: Lâmina de irrigação, Motobomba, Tarifa, Grupo tarifário.COMPARATIVE ANALYSIS OF THE COST OF AN IRRIGATION DEPTH USING ELECTRIC ENERGY AND DIESELABSTRACT: The aim of this study was to estimate the cost of electricity and diesel use for application of 1 mm water depth in an area of 1 hectare. The tariff group considered was "B" for low voltage and subgroup "B2 - Rural". The applied tariff rates were obtained from the energy company of Minas Gerais - CEMIG. The value adopted for a liter of diesel fuel was the average observed in the southern region of Minas Gerais in the second semester  of 2012. To do the  calculation, the overall yields adopted for  the whole pump and manometer total elevation  were, respectively, 60%, 65%, 70%, 75% and 10, 25, 75, 100, 125, 150, 175, 200 meters of water column. To calculate the total cost of 1mm ha-1 application, it was considered that the cost of energy on irrigation activity represents 65% and 75% for electricity and diesel, respectively. The results showed a linear increase of energy costs by increasing the manometer total elevation. The use of more efficient pump systems reduces the cost of electric power in the range of 7% to 20% and of diesel by 4% to 16% considering the proposed situations. In all cases, the electrical energy is more advantageous regarding the cost.Keywords: Depth irrigation, Motor-pump, Tariff, Tariff Group.


2021 ◽  
Vol 295 ◽  
pp. 02001
Author(s):  
Alexey Pleshkov ◽  
Aleksey Kopylov ◽  
Petr Ulyankin

The issues of optimizing regional pricing are especially acute for the Kaliningrad Region due to its exclave features. At the same time, the cost of energy resources has become one of the main issues in making managerial decisions. Recently, the so-called Technoparks have become one of the new forms of organizing the production process in a certain branch of industry, or a process that is at the junction of several branches. There are a variety of descriptions of the indisputable advantages of this work format for a specific technological process, however, the possibilities in the field of reducing the costs of consumed energy resources that arise with such a local siting of production are not discussed that often. According to the authors of the article, based on the structure of the tariff, it is possible to classify methods of reducing the cost price by the impact on the components of the final cost of energy supply services. It should be noted that the classification sign of saving methods will be precisely the component of the tariff, while the methods themselves can be aimed both at reducing the price expression of each component of the tariff and at the volume of services for this component. The authors have also identified regional features of the pricing processes in the energy industry.


2019 ◽  
Vol 486 (5) ◽  
pp. 543-546
Author(s):  
T. S. Gabderakhmanova ◽  
O. S. Popel

The results of the economic feasibility assessment of photovoltaic (PV) microgeneration systems by the criterion of the cost of energy are presented. The assessment is based on dynamic modelling of three different configurations of grid-connected PV systems - without energy storage, with electrical energy storage and with thermal energy storage - performed for weather and electricity tariff conditions of several prospective Russian regions. Government support measures and regulatory standards currently developing in Russia for microgeneration technologies are taken into account. It is shown that under certain conditions PV microgeneration technologies could be economically feasible in some energy isolated areas and non-pricing zones of the wholesale electricity and capacity market of Russia, particularly in the Sakha Republic, whereas in pricing zones - couldn’t for any of the considered system configurations.


As the demand for electrical energy increases continuously, we cannot rely on the existing conventional source for continuous power supply, as they are diminishing fast. The renewable energy sources are the best alternative for this energy crisis. We have different types of renewable energy sources and choice of source depends on location and load requirement. The most prominent source is the solar energy because of its own advantages. The nature of supply from this source is DC and it is to be converted into AC for supply to consumers. However, inverters are used for this conversion but produces harmonics. The Multilevel inverters are the alternate choice over conventional inverters due to the advantages of Low dv/dt and lower switching losses. Out of various multilevel inverters, cascaded H bridge (CHB) MLI topology is a well known solution for reducing the harmonics, which needs more number of switches and isolation power supplies which further increases the cost. This paper describes a proposed hybrid H-bridge topology with reduced switches. The proposed topology is implemented in Matlab/Simulink and results for 5, 7, 9 and 11 level are analyzed with their THD in output voltage. Hardware model for 5-level inverter is developed using 8051 micro-controller and results are presented


Sign in / Sign up

Export Citation Format

Share Document