Effects of Electrical Contact Resistance on External Energy Losses in Lithium-Ion Battery Packs for Hybrid and Electric Vehicles

Author(s):  
Peyman Taheri ◽  
Scott Hsieh ◽  
Majid Bahrami

Lithium-ion (Li-ion) batteries are favored in hybrid-electric vehicles and electric vehicles for their outstanding power characteristics. In this paper the energy loss due to electrical contact resistance (ECR) at the interface of electrodes and current-collector bars in Li-ion battery assemblies is investigated for the first time. ECR is a direct result of contact surface imperfections and acts as an ohmic resistance at the electrode-collector joints. ECR is measured at electrode connections of a sample Li-ion battery, and a straightforward analysis is presented to evaluate the relevant energy loss. Through the experiments, it is observed that ECR is an important issue in energy management of Li-ion batteries. Effects of surface imperfection, contact pressure, joint type, collector bar material, and interfacial materials on ECR are highlighted. The obtained data show that in the considered battery, the energy loss due to ECR can be as high as 20% of the total energy flow in and out of the battery under normal operating conditions. However, ECR loss can be reduced to 6% when proper joint pressure and/or surface treatment are used. A poor connection at the electrode-collector interface can lead to a significant battery energy loss as heat generated at the interface. At sever conditions, heat generation due to ECR might cause serious safety issues, thermal runaway, sparks, and even melting of the electrodes.

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1074 ◽  
Author(s):  
Yu Miao ◽  
Patrick Hynan ◽  
Annette von Jouanne ◽  
Alexandre Yokochi

Over the past several decades, the number of electric vehicles (EVs) has continued to increase. Projections estimate that worldwide, more than 125 million EVs will be on the road by 2030. At the heart of these advanced vehicles is the lithium-ion (Li-ion) battery which provides the required energy storage. This paper presents and compares key components of Li-ion batteries and describes associated battery management systems, as well as approaches to improve the overall battery efficiency, capacity, and lifespan. Material and thermal characteristics are identified as critical to battery performance. The positive and negative electrode materials, electrolytes and the physical implementation of Li-ion batteries are discussed. In addition, current research on novel high energy density batteries is presented, as well as opportunities to repurpose and recycle the batteries.


Author(s):  
Gearoid A Collins ◽  
Hugh Geaney ◽  
Kevin Michael Ryan

Li-ion batteries (LIBs) have become critical components in the manufacture of electric vehicles (EV) as they offer the best all-round performance compared to competing battery chemistries. However, LIB performance at...


2015 ◽  
Vol 3 (20) ◽  
pp. 10942-10948 ◽  
Author(s):  
Wei Weng ◽  
Qingqing Wu ◽  
Qian Sun ◽  
Xin Fang ◽  
Guozhen Guan ◽  
...  

Failure mechanism is investigated for the first time in a Si-based fiber-shaped electrode. The interphase electrical contact resistance indicates the dominant failure mechanism, which is the loss of contact between the current collector/conductive network and the active material. The decreasing contact resistance denotes the loose interphase contact and a decreasing capacity.


Author(s):  
Agus Risdiyanto ◽  
Umar Khayam ◽  
Noviadi A. Rachman ◽  
Maulana Arifin

<p>One of the several failure cases in electric vehicle could be occured at the Lithium-ion (Li-ion) battery connectors when loaded by high current. This failure caused by bad contact of connectors so that the contact resistance increase and lead to high power losses, overheating, and it can even cause a fire hazard. This paper presents a thermal distributions of  Li-ion battery connectors on different coating material in relation to the value of contact resistance. There were two test samples of modeled: copper connection without coating and copper connection with silver coating. Each sample was loaded by the DC current of 350A, and temperature at the connection was measured until steady state condition reached and simulated by Solidwork software. The results show that the temperature at the inside contact area was higher than the outside contact area of connection that appears caused by higher of the contact resistance. Both measurement and simulation results have same tendency that copper connection with silver coating having lower contact resistance, lower maximum temperature, and lower losses about 32 % than copper connection without  coating. Silver coating can be considered as other alternative to prevent overheating, high losses, and failure in Li-ion battery connector.</p>


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2638 ◽  
Author(s):  
Daniele Stampatori ◽  
Pier Paolo Raimondi ◽  
Michel Noussan

Lithium ion batteries are experiencing an increased success thanks to their interesting performances, in particular for electric vehicles applications. Their continuous technological improvements in the last years are providing higher energy density and lower manufacturing costs. However, the environmental performance of their supply chain is of paramount importance to guarantee a cleaner alternative to fossil-based solutions on the entire life cycle of the applications. This paper carries out a comprehensive review on the main aspects related to Li-ion batteries manufacturing, to support the readers in understanding the complexity of the subject and the main challenges and opportunities for the future developments of this technology. The paper discusses the expected future demand of batteries; the main aspects related to the supply chain, including existing assets, input materials and alternative technologies; the end-of-life of batteries; the environmental impacts; and the main geopolitical implications.


2011 ◽  
Vol 04 (03) ◽  
pp. 209-215 ◽  
Author(s):  
PEI KANG SHEN ◽  
HONGLI ZOU ◽  
HUI MENG ◽  
MINGMEI WU

Highly ordered spherical LiFePO4 is synthesized by an intermittent microwave heating assisted water-bath reaction and the resulted LiFePO4 shows high tap-density of 2.0 g cm-3 and volumetric specific capacity of 325 mAh cm-3 when used as cathode material in Li-ion battery. The high performance of the ordered spherical LiFePO4 is explained in terms of the high conductivity and the improved mass transfer kinetics. Such highly ordered spherical LiFePO4 with improved volumetric specific capacity will be potentially used in the high-power Li-ion batteries for electric vehicles.


Author(s):  
A. Mancha

Today the United States is heavily reliant on the lithium-ion battery as most portable devices and electronics run on it. Current innovations are also looking on how to maximize it on the grid and transportation. This paper will look at three sovereign states and their current initiatives on Li-ion battery recycling: US, European Union, and China. The term initiative is used loosely as the information is not permanent in most policies or plans. Li-ion battery recycling initiatives are crucial to look at because used and wasted Li-ion batteries can disrupt public health and Li-ion batteries are expected to be a factor for effective material supply for future battery production especially in transportation, like the Tesla Roadster.


Author(s):  
Agus Risdiyanto ◽  
Umar Khayam ◽  
Noviadi A. Rachman ◽  
Maulana Arifin

<p>One of the several failure cases in electric vehicle could be occured at the Lithium-ion (Li-ion) battery connectors when loaded by high current. This failure caused by bad contact of connectors so that the contact resistance increase and lead to high power losses, overheating, and it can even cause a fire hazard. This paper presents a thermal distributions of  Li-ion battery connectors on different coating material in relation to the value of contact resistance. There were two test samples of modeled: copper connection without coating and copper connection with silver coating. Each sample was loaded by the DC current of 350A, and temperature at the connection was measured until steady state condition reached and simulated by Solidwork software. The results show that the temperature at the inside contact area was higher than the outside contact area of connection that appears caused by higher of the contact resistance. Both measurement and simulation results have same tendency that copper connection with silver coating having lower contact resistance, lower maximum temperature, and lower losses about 32 % than copper connection without  coating. Silver coating can be considered as other alternative to prevent overheating, high losses, and failure in Li-ion battery connector.</p>


Sign in / Sign up

Export Citation Format

Share Document