scholarly journals Experimental and Simulation Studies of Thermal Distribution on Modified Connector of Li-Ion Battery for Electric Vehicles Application

Author(s):  
Agus Risdiyanto ◽  
Umar Khayam ◽  
Noviadi A. Rachman ◽  
Maulana Arifin

<p>One of the several failure cases in electric vehicle could be occured at the Lithium-ion (Li-ion) battery connectors when loaded by high current. This failure caused by bad contact of connectors so that the contact resistance increase and lead to high power losses, overheating, and it can even cause a fire hazard. This paper presents a thermal distributions of  Li-ion battery connectors on different coating material in relation to the value of contact resistance. There were two test samples of modeled: copper connection without coating and copper connection with silver coating. Each sample was loaded by the DC current of 350A, and temperature at the connection was measured until steady state condition reached and simulated by Solidwork software. The results show that the temperature at the inside contact area was higher than the outside contact area of connection that appears caused by higher of the contact resistance. Both measurement and simulation results have same tendency that copper connection with silver coating having lower contact resistance, lower maximum temperature, and lower losses about 32 % than copper connection without  coating. Silver coating can be considered as other alternative to prevent overheating, high losses, and failure in Li-ion battery connector.</p>

Author(s):  
Agus Risdiyanto ◽  
Umar Khayam ◽  
Noviadi A. Rachman ◽  
Maulana Arifin

<p>One of the several failure cases in electric vehicle could be occured at the Lithium-ion (Li-ion) battery connectors when loaded by high current. This failure caused by bad contact of connectors so that the contact resistance increase and lead to high power losses, overheating, and it can even cause a fire hazard. This paper presents a thermal distributions of  Li-ion battery connectors on different coating material in relation to the value of contact resistance. There were two test samples of modeled: copper connection without coating and copper connection with silver coating. Each sample was loaded by the DC current of 350A, and temperature at the connection was measured until steady state condition reached and simulated by Solidwork software. The results show that the temperature at the inside contact area was higher than the outside contact area of connection that appears caused by higher of the contact resistance. Both measurement and simulation results have same tendency that copper connection with silver coating having lower contact resistance, lower maximum temperature, and lower losses about 32 % than copper connection without  coating. Silver coating can be considered as other alternative to prevent overheating, high losses, and failure in Li-ion battery connector.</p>


Author(s):  
Peyman Taheri ◽  
Scott Hsieh ◽  
Majid Bahrami

Lithium-ion (Li-ion) batteries are favored in hybrid-electric vehicles and electric vehicles for their outstanding power characteristics. In this paper the energy loss due to electrical contact resistance (ECR) at the interface of electrodes and current-collector bars in Li-ion battery assemblies is investigated for the first time. ECR is a direct result of contact surface imperfections and acts as an ohmic resistance at the electrode-collector joints. ECR is measured at electrode connections of a sample Li-ion battery, and a straightforward analysis is presented to evaluate the relevant energy loss. Through the experiments, it is observed that ECR is an important issue in energy management of Li-ion batteries. Effects of surface imperfection, contact pressure, joint type, collector bar material, and interfacial materials on ECR are highlighted. The obtained data show that in the considered battery, the energy loss due to ECR can be as high as 20% of the total energy flow in and out of the battery under normal operating conditions. However, ECR loss can be reduced to 6% when proper joint pressure and/or surface treatment are used. A poor connection at the electrode-collector interface can lead to a significant battery energy loss as heat generated at the interface. At sever conditions, heat generation due to ECR might cause serious safety issues, thermal runaway, sparks, and even melting of the electrodes.


Nanoscale ◽  
2021 ◽  
Author(s):  
Kun Wang ◽  
Yongyuan Hu ◽  
Jian Pei ◽  
Fengyang Jing ◽  
Zhongzheng Qin ◽  
...  

High capacity Co2VO4 becomes a potential anode material for lithium ion batteries (LIBs) benefiting from its lower output voltage during cycling than other cobalt vanadates. However, the application of this...


Author(s):  
Satadru Dey ◽  
Beshah Ayalew

This paper proposes and demonstrates an estimation scheme for Li-ion concentrations in both electrodes of a Li-ion battery cell. The well-known observability deficiencies in the two-electrode electrochemical models of Li-ion battery cells are first overcome by extending them with a thermal evolution model. Essentially, coupling of electrochemical–thermal dynamics emerging from the fact that the lithium concentrations contribute to the entropic heat generation is utilized to overcome the observability issue. Then, an estimation scheme comprised of a cascade of a sliding-mode observer and an unscented Kalman filter (UKF) is constructed that exploits the resulting structure of the coupled model. The approach gives new real-time estimation capabilities for two often-sought pieces of information about a battery cell: (1) estimation of cell-capacity and (2) tracking the capacity loss due to degradation mechanisms such as lithium plating. These capabilities are possible since the two-electrode model needs not be reduced further to a single-electrode model by adding Li conservation assumptions, which do not hold with long-term operation. Simulation studies are included for the validation of the proposed scheme. Effect of measurement noise and parametric uncertainties is also included in the simulation results to evaluate the performance of the proposed scheme.


Author(s):  
Roozbeh Pouyanmehr ◽  
Morteza Pakseresht ◽  
Reza Ansari ◽  
Mohammad Kazem Hassanzadeh-Aghdam

One of the limiting factors in the life of lithium-ion batteries is the diffusion-induced stresses on their electrodes that cause cracking and consequently, failure. Therefore, improving the structure of these electrodes to be able to withstand these stresses is one of the ways that can extend the life of the batteries as well as improve their safety. In this study, the effects of adding graphene nanoplatelets and microparticles into the active plate and current collectors, respectively, on the diffusion induced stresses in both layered and bilayered electrodes are numerically investigated. The micromechanical models are employed to predict the mechanical properties of both graphene nanoplatelet-reinforced Sn-based nanocomposite active plate and silica microparticle-reinforced copper composite current collector. The effect of particle size and volume fraction in the current collector on diffusion induced stresses has been studied. The results show that in electrodes with a higher volume fraction of particles and smaller particle radii, decreased diffusion induced stresses in both the active plate and the current collector are observed. These additions will also result in a significant decrease in the bending of the electrode.


Author(s):  
Sheng Shen ◽  
M. K. Sadoughi ◽  
Xiangyi Chen ◽  
Mingyi Hong ◽  
Chao Hu

Over the past two decades, safety and reliability of lithium-ion (Li-ion) rechargeable batteries have been receiving a considerable amount of attention from both industry and academia. To guarantee safe and reliable operation of a Li-ion battery pack and build failure resilience in the pack, battery management systems (BMSs) should possess the capability to monitor, in real time, the state of health (SOH) of the individual cells in the pack. This paper presents a deep learning method, named deep convolutional neural networks, for cell-level SOH assessment based on the capacity, voltage, and current measurements during a charge cycle. The unique features of deep convolutional neural networks include the local connectivity and shared weights, which enable the model to estimate battery capacity accurately using the measurements during charge. To our knowledge, this is the first attempt to apply deep learning to online SOH assessment of Li-ion battery. 10-year daily cycling data from implantable Li-ion cells are used to verify the performance of the proposed method. Compared with traditional machine learning methods such as relevance vector machine and shallow neural networks, the proposed method is demonstrated to produce higher accuracy and robustness in capacity estimation.


2019 ◽  
Vol 18 (2) ◽  
pp. 49-56
Author(s):  
Md. Nahian Al Subri Ivan ◽  
Sujit Devnath ◽  
Rethwan Faiz ◽  
Kazi Firoz Ahmed

To infer and predict the reliability of the remaining useful life of a lithium-ion (Li-ion) battery is very significant in the sectors associated with power source proficiency. As an energy source of electric vehicles (EV), Li-ion battery is getting attention due to its lighter weight and capability of storing higher energy. Problems with the reliability arises while li-ion batteries of higher voltages are required. As in this case several li-ion cells areconnected in series and failure of one cell may cause the failure of the whole battery pack. In this paper, Firstly, the capacity degradation of li-ion cells after each cycle is observed and secondly with the help of MATLAB 2016 a mathematical model is developed using Weibull Probability Distribution and Exponential Distribution to find the reliability of different types of cell configurations of a non-redundant li-ion battery pack. The mathematical model shows that the parallel-series configuration of cells is more reliable than the series configuration of cells. The mathematical model also shows that if the discharge rate (C-rate) remains constant; there could be an optimum number for increasing the cells in the parallel module of a parallel-series onfiguration of cells of a non-redundant li-ion battery pack; after which only increasing the number of cells in parallel module doesn’t increase the reliability of the whole battery pack significantly. 


2020 ◽  
Vol 4 (4) ◽  
pp. 1164-1173 ◽  
Author(s):  
Zhen Li ◽  
Zhi-Wei Liu ◽  
Zhen-Jie Mu ◽  
Chen Cao ◽  
Zeyu Li ◽  
...  

Two new imidazolium-based cationic COFs were synthesized and employed as all-solid electrolytes, and exhibited high lithium ion conductivity at high temperature. The assembled Li-ion battery displays preferable battery performance at 353 K.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2212
Author(s):  
Hien Vu ◽  
Donghwa Shin

Lithium-ion batteries exhibit significant performance degradation such as power/energy capacity loss and life cycle reduction in low-temperature conditions. Hence, the Li-ion battery pack is heated before usage to enhance its performance and lifetime. Recently, many internal heating methods have been proposed to provide fast and efficient pre-heating. However, the proposed methods only consider a combination of unit cells while the internal heating should be implemented for multiple groups within a battery pack. In this study, we investigated the possibility of timing control to simultaneously obtain balanced temperature and state of charge (SOC) between each cell by considering geometrical and thermal characteristics of the battery pack. The proposed method schedules the order and timing of the charge/discharge period for geometrical groups in a battery pack during internal pre-heating. We performed a pack-level simulation with realistic electro-thermal parameters of the unit battery cells by using the mutual pulse heating strategy for multi-layer geometry to acquire the highest heating efficiency. The simulation results for heating from −30 ∘ C to 10 ∘ C indicated that a balanced temperature-SOC status can be achieved via the proposed method. The temperature difference can be decreased to 0.38 ∘ C and 0.19% of the SOC difference in a heating range of 40 ∘ C with only a maximum SOC loss of 2.71% at the end of pre-heating.


Sign in / Sign up

Export Citation Format

Share Document