Design, Analysis and Construction of a Low Cost Air Heater for Residential Uses

Author(s):  
Bernd Weber ◽  
Jessica A. Fernández Valdespino ◽  
David García ◽  
M. Dolores Durán ◽  
Iván G. Martínez Cienfuegos ◽  
...  

In order to meet global challenges to reduce greenhouse gas emissions, the implementation of solar systems for residential purposes is an emergent task. Commonly liquid-based solar systems are used to heat up shower and pool water. More recently space heating systems have become part of sustainable buildings. An alternative could be a solar system that uses air as energy carrier. This study analyses the retrofit of such a system into a 40-year-old building. Starting from the analysis of the energy demand of a selected room, a solar air heater was designed, simulated and evaluated experimentally. The solar efficiency of the constructed collector reached 60%.

2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Kumar Venkateshwar ◽  
Abu Raihan Mohammad Siddique ◽  
Syeda Tasnim ◽  
Hari Simha ◽  
Shohel Mahmud

Abstract Solar air heater is a promising, economically viable, and matured technology for space heating and drying applications. One of the primary reasons for the limited usage of a solar air heater in developing countries is the unavailability of continuous electricity supply. Although the solar air heater is theoretically passive, practically electrical energy is required to achieve a steady airflow. Therefore, the unreliability of electricity forces people to rely on firewood for heat during the cold weather, which has severe effects on health and climate change. In the present work, the potential of thermoelectric generators (TEGs) to meet the electrical energy requirement of a solar air heater is studied. Two configurations, each with three different numbers of stages of TEGs, are analyzed. The effect of the integration of TEGs on the thermal performance of solar air heater is analyzed alongside the comparison between the electrical energy required by solar air heaters and electrical energy generated upon the integration of TEGs. A numerical model is developed in matlab and validated using the experimental results. One of the designs meets the electrical energy requirement of the fan in a wide operational range but lowers the process heat generation by approximately 1–6.25%. The electrical energy generated by the other design falls short of demand posed by the system in most operating range. However, the thermal energy generation is marginally higher compared to that of the conventional solar air heater.


2019 ◽  
Vol 11 (6) ◽  
pp. 1586 ◽  
Author(s):  
Ana Borbon-Almada ◽  
Norma Rodriguez-Muñoz ◽  
Mario Najera-Trejo

The building sector is considered a key area for sustainable development, due to the potential to reduce greenhouse gas emissions in the numerous economic activities that this sector involves. A low-cost lightweight cementitious composite consisting in perlite mortar was fabricated and evaluated. The thermal conductivity and heat capacity of the proposed composite were tested in the laboratory. The lightweight composite was integrated into a prototypical house and its thermal performance was tested for two different arid climates during a typical meteorological year. A techno-economic analysis of this integration was carried out, which showed the lightweight system integration could reduce the energy demand up to 10.3% due to the decreased use of heating and cooling systems. The CO2 emissions associated with electricity and gas use on cooling and heating systems could be reduced up to 10.9%.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7258
Author(s):  
Li Yu ◽  
Sanjay B. Shah ◽  
Mark T. Knauer ◽  
Michael D. Boyette ◽  
Larry F. Stikeleather

Supplementing fossil fuels with solar air tempering for brooding young livestock could reduce energy use and improve indoor air quality. Metal transpired solar collectors (TSC) are effective but too expensive for heating livestock buildings. An inexpensive 12.7 m2 dark grey landscape-fabric-based transpired solar collector (fTSC) was evaluated in a swine nursery with two herds of pigs. A fraction of the fTSC area was underlain with phase change material (PCM) to store excess heat. The Test room with the fTSC was compared with an adjacent identical Control room, each with 120 piglets. The fTSC provided supplemental heating, e.g., with a suction velocity (Vs) of 0.027 m/s during a 9 h period, air temperature was increased by 11.6 °C (mean irradiance of 592 W/m2). Between 4 pm and 9 pm that same day, the PCM increased air temperature by 3.9 °C. The fTSC did not reduce propane use or improve pig performance. Higher Vs, operational changes and controller modifications could improve system performance and reduce cost. Modeling could be used to optimize PCM use. Hence, this very low-cost fabric-based solar air heater offers potential for considerable reduction in heat energy use in livestock barns.


2011 ◽  
Vol 8 (1) ◽  
pp. 101-105
Author(s):  
M. K. Lalji ◽  
R. M. Sarviya ◽  
J. L. Bhagoria

Solar energy is an economical alternative to the today's energy demand. Solar air heater is used for heating the air economically but produces low thermal efficiency. In this paper, an attempt has been made to study the design of solar heaters to increase the thermal efficiency. The matrix solar air heater with a wire mesh produces higher thermal efficiency over the conventional flat plate solar air heater. The evaluation of different methods for increasing efficiency of packed bed solar air heater has been done . Effect of different parameters on thermal efficiency of solar heater has also been studied.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Dhananjay Kumar ◽  
Laljee Prasad

Abstract The use of artificial roughness is an efficient and commercial way to appreciate the thermal performance from the collector to the air in solar air heater ducts, for numerous applications such as space-heating, crop-drying, and seasoning of timber industrial purpose. In this paper, the tentative inquiry on thermal enactment using new-fangled of three-sided roughened quadrilateral duct solar air heater having an alignment of multiple-v and transverse wire is performed and compared the outcomes with smooth duct air heater under similar operational circumstances. The modification of an arrangement and operational constraints is inspected within the restrictions, the moral of four-sided duct aspect ratio (W/H) = 8, the Reynolds number occupied from 3000 to 12,000, fraction of pitch to roughness height, P/e in the range of 10–25; ratio of roughness height to hydraulic diameter, e/D in the range of 0.018–0.042; at flow attack angle, α = 60 deg for constant moral of relative roughness width, (W/w) = 6. The augmentation on thermal efficiency in three-sided rugged duct is found to be 23–86% when compared to smooth duct, and the maximum thermal efficiency can occur at P/e = 10 and e/D = 0.042. The enhancement in air temperature flowing under three-sided roughened duct is found to be 49.27% more than that of a smooth duct. The instant innovative form of three-sided roughened solar air warmer would be preferable to those of a smooth solar air heater with respect to heat assignment.


2018 ◽  
Vol 40 (1) ◽  
pp. 75-92 ◽  
Author(s):  
George Bennett ◽  
Cliff Elwell ◽  
Tadj Oreszczyn

Residential space and water heating account for 23% of UK final energy demand and combination gas boilers are the dominant technology. Performance gap issues in gas boiler systems have been reported, with previous studies unable to isolate or quantify root causes for performance issues, hampered by indirect and coarse measurement methods. Utilising high-frequency data, through state-of-the-art boiler diagnostics from 221 UK combination boilers, assumptions in efficiency standards are challenged. Total heating energy consumption and number of hot water tappings are in line with national expectations but the observed cycling behaviour of boilers gives cause for concern due to links with lower performance and higher emissions. Most combi-boilers appear oversized for space heating and despite available modulation are unable to prevent rapid on–off cycling. Per day, half of combi boilers studied average more than 50 starts and 70% of starts average less than 10 min during space heating operation. Cycling contradicts assumptions in efficiency testing standards, which assume steady state operation, weighted by full and part power measurements. Addressing oversizing and excessive boiler cycling provides an opportunity to quickly and significantly reduce emissions associated with heating, at low cost through the ongoing replacement of millions of boilers. Practical application: Lessons learned from this research regarding the detrimental performance issues seen in gas combi boilers are directly applicable to the topics of boiler specification for building service engineers and installers, such as guidelines in CIBSE Guide A, 1 CE54 Whole house boiler sizing method 2 and legislation set out in BoilerPlus from the Department of Business, Energy and Industrial Strategy. Plant size ratio, radiator hydraulic layout and controls can all contribute to the rapid cycling seen in the data and can all be influenced by building service professionals. Boiler modulation range is also crucial and manufacturers need to be aware of the benefits of extending modulation in new products.


1991 ◽  
Vol 31 (5) ◽  
pp. 471-479 ◽  
Author(s):  
Ashok Kumar Bhargava ◽  
H.P. Garg ◽  
Ram Kumar Agarwal

2014 ◽  
Vol 656 ◽  
pp. 242-251 ◽  
Author(s):  
Teodora Melania Şoimoşan ◽  
Raluca Andreea Felseghi ◽  
Călin Ovidiu Safirescu ◽  
Georgiana Dorina Iacob

The present paper approaches the premises referring to the typologies and operating regimes that characterize district heating systems and that are necessary to efficiently integrate, in the district heating network, the systems that use solar energy to produce thermal energy in a decentralized way. A set of operating simulations were carried on the targeted thermal system during a whole year, for different hydraulic feed-in connection of the solar system and different operating temperatures of the heating agent in the thermal network, in order to quantitatively and qualitatively evaluate the impact of converting a classical thermal system in a hybrid solar-thermal system.


2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Abdulghani M. Ramadan ◽  
Khairi Muftah ◽  
Abdul-Rahman Al-Naaji ◽  
Abdul-Baset Al-Soul ◽  
Akram A. Essnid ◽  
...  

Solar air heaters are widely used in many low temperature applications such as space heating, crops drying, desalination..etc. It collects solar radiant energy and transforms it into heat through a fluid (air) flowing inside the system. The outside cold air is heated through the system and delivered to the required application. It is simple, economic and clean. In this study, an experimental investigation is carried out using a test-rig installed at the laboratories facility for Center of Solar Energy Research and Studies (CSERS) in Tajoura-Libya equipped with all necessary measuring instruments and devices. The aim of this study is to investigate the effect of process air mass flow rate on the thermal performance of a solar air heater working at different operating conditions under the prevailing conditions of Tajoura-Libya. Experiments were conducted on specified days in August 2019, October 2019 and January, 2020.Results show that there is a noticeable increase in the air temperatures of the solar air heater as incident solar radiation values increase during the day time, especially at afternoon. The maximum average outlet air temperature measured reaches 60 oC which is suitable for space heating and crops drying applications. Useful heat energy collected is directly proportional to the incident solar radiation. Increasing air mass flow rates leads to a corresponding decrease in the temperature at different locations in the solar air heater. Furthermore, the average thermal efficiency values of the solar air heater range from 35% to 65%. Average overall heat loss coefficient values tend to decrease with the day time. Finally, the present study results coincide with literature and show a good agreement.


2021 ◽  
Vol 36 ◽  
pp. 15-20
Author(s):  
P. Pasichnyk ◽  
К. Gaba ◽  
М. Kyrychenko

The development and improvement of solar equipment is a necessary step in the development of solar heating systems. One of the ways to develop solar air heaters is to use new materials for the production of solar absorbers. This expands the possibility of using nozzle and capillary-porous materials in contrast to liquid solar collectors. Development and research of air heating systems with equipment made of modern textile materials is relevant. For the manufacture of absorbers it is advisable to use textile materials. This will reduce the cost of solar collectors, as well as reduce their weight and capital costs. The absorber meets requirements for both solar thermal collectors and electric heaters: high absorption capacity of solar radiation; developed heat transfer surface; relevant physical properties: low mass, resistance to ultraviolet radiation, thermal resistance, low cost for cheaper solar system; sufficient electrical resistance. A combined solar-electric air heater has been developed, which combines two main elements of any solar system – a solar heat collector and an additional heat source, the absorber of which is made of carbon graphite knitted fabric. This reduces its cost and mass and allows them to be used on existing heating facilities without the construction of bulky supporting structures to accommodate solar fields. The combined solar-electric air heater can be used as an independent heat generator for heat supply systems. To use the proposed solar-electric air heater, it is necessary to heat its absorber with an electric current, so the material from which it is made must be electrically conductive, but have sufficient electrical resistance. The use of carbon-graphite knitted fabric allows the use the direct heating of the solar energy absorber by electric current due to the corresponding electrical characteristics. This article presents the results of an experimental study of the electrical resistivity of carbon-graphite knitted fabric. These studies allow determining the electrical power of the device regardless of the size of the device. The research results presented in the article can be used only for a certain type of carbon graphite knitted fabric.


Sign in / Sign up

Export Citation Format

Share Document