Investigation of Exergy Destruction Based on Avoidable and Unavoidable Concepts for Helical Coils

Author(s):  
Farid Bahiraee ◽  
Aidin Salehzadeh ◽  
Rahim Khoshbakhti Saray

An inevitable problem challenges heat exchanger designers is that the heat transfer augmentation in a thermal system is always achieved at the expense of an increase in pressure loss. Thus, the optimal trade-off by choosing the most proper configuration and best flow condition has become the critical problem for design work. The brief survey on literature shows that optimal Reynolds number (i.e. the Reynolds number which corresponds to minimum entropy generation) of laminar forced convection in a helical tube, was specified based on minimum entropy generation. Therefore, the present study analyzes the thermodynamic potential of improvement for steady, laminar, fully developed, forced convection in a helical coiled tube subjected to uniform wall temperature based on the concept of avoidable and unavoidable exergy destruction. The influence of coil curvature ratio, dimensionless inlet temperature difference, dimensionless passage length of the coil, and fluid properties on avoidable exergy destruction have been investigated for water as working fluid. Results show considerable potential of thermodynamic optimization of helical coil tubes. Also, in the range of present study a relation for determining the amount of optimum Dean number is proposed.

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6399
Author(s):  
Nguyen Minh Phu ◽  
Ngo Thien Tu ◽  
Nguyen Van Hap

In this paper, a triple-pass solar air heater with three inlets is analytically investigated. The effects of airflow ratios of the second and third passes (ranging from 0 to 0.4), and the Reynolds number of the third pass (ranging from 8000 to 18,000) on the thermohydraulic efficiency and entropy generation are assessed. An absorber plate equipped with rectangular fins on both sides is used to enhance heat transfer. The air temperature change in the passes is represented by ordinary differential equations and solved by numerical integration. The results demonstrate that the effect of the third pass airflow ratio on the thermohydraulic efficiency and entropy generation is more significant than that of the second pass airflow ratio. The difference in air temperature through the collector shows an insignificant reduction, but the air pressure loss is only 50% compared with that of a traditional triple-pass solar air heater. Increasing the air flow ratios dramatically reduces entropy generation. Multi-objective optimization found a Reynolds number of 11,156 for both the airflow ratio of the second pass of 0.258 and airflow ratio of the third pass of 0.036 to be the an optimal value to achieve maximum thermohydraulic efficiency and minimum entropy generation.


Author(s):  
R. K. Jha ◽  
S Chakraborty

This paper deals with estimation of the optimal dimensions of arrays of plate fins cooled by forced convection. The optimization is achieved by minimizing the entropy generation rate using genetic algorithm-based evolutionary computing techniques. Results are presented for staggered plate fins configuration and continuous plate fins configuration. The effects of heat transfer and fluid friction on entropy generation rate are also reported.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Oktay Çiçek ◽  
A. Cihat Baytaş

Purpose The purpose of this study is to numerically investigate heat transfer and entropy generation between airframe and cabin-cargo departments in an aircraft. The conjugate forced convection and entropy generation in a cylindrical cavity within air channel partly filled with porous insulation material as simplified geometry for airframe and cabin-cargo departments are considered under local thermal non-equilibrium condition. Design/methodology/approach The non-dimensional governing equations for fluid and porous media discretized by finite volume method are solved using the SIMPLE algorithm with pressure and velocity correction. Findings The effects of the following parameters on the problem are investigated; Reynolds number, Darcy number, the size of inlet and exit cross-section, thermal conductivity ratio for solid and fluid phases, angle between the vertical symmetry axis and the end of channel wall exit and the gap between adiabatic channel wall and horizontal adiabatic wall separating cabin and cargo sections. Originality/value This paper can provide a basic perspective and framework for thermal design between the fuselage and cabin-cargo sections. The minimum total entropy generation number is calculated for various Reynolds numbers and thermal conductivity ratios. It is observed that the channel wall temperature increases for high Reynolds number, low Darcy number, narrower exit cross-section and wider the gap between channel wall and horizontal.


2006 ◽  
Vol 128 (4) ◽  
pp. 324-330 ◽  
Author(s):  
W. A. Khan ◽  
J. R. Culham ◽  
M. M. Yovanovich

The following study will examine the effect on overall thermal/fluid performance associated with different fin geometries, including, rectangular plate fins as well as square, circular, and elliptical pin fins. The use of entropy generation minimization, EGM, allows the combined effect of thermal resistance and pressure drop to be assessed through the simultaneous interaction with the heat sink. A general dimensionless expression for the entropy generation rate is obtained by considering a control volume around the pin fin including base plate and applying the conservations equations for mass and energy with the entropy balance. The formulation for the dimensionless entropy generation rate is developed in terms of dimensionless variables, including the aspect ratio, Reynolds number, Nusselt number, and the drag coefficient. Selected fin geometries are examined for the heat transfer, fluid friction, and the minimum entropy generation rate corresponding to different parameters including axis ratio, aspect ratio, and Reynolds number. The results clearly indicate that the preferred fin profile is very dependent on these parameters.


1998 ◽  
Vol 120 (3) ◽  
pp. 797-800 ◽  
Author(s):  
W. W. Lin ◽  
D. J. Lee

Second-law analysis on the herringbone wavy plate fin-and-tube heat exchanger was conducted on the basis of correlations of Nusselt number and friction factor proposed by Kim et al. (1997), from which the entropy generation rate was evaluated. Optimum Reynolds number and minimum entropy generation rate were found over different operating conditions. At a fixed heat duty, the in-line layout with a large tube spacing along streamwise direction was recommended. Furthermore, within the valid range of Kim et al.’s correlation, effects of the fin spacing and the tube spacing along spanwise direction on the second-law performance are insignificant.


AIChE Journal ◽  
2014 ◽  
Vol 61 (1) ◽  
pp. 103-117 ◽  
Author(s):  
Paul G. Ghougassian ◽  
Vasilios Manousiouthakis

Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 895
Author(s):  
Mohammad Abdollahzadeh Jamalabadi

The excellent thermal characteristics of nanoparticles have increased their application in the field of heat transfer. In this paper, a thermophysical and geometrical parameter study is performed to minimize the total entropy generation of the viscoelastic flow of nanofluid. Entropy generation with respect to volume fraction (<0.04), the Reynolds number (20,000–100,000), and the diameter of the microchannel (20–20,000 μm) with the circular cross-section under constant flux are calculated. As is shown, most of the entropy generation owes to heat transfer and by increasing the diameter of the channel, the Bejan number increases. The contribution of heat entropy generation in the microchannel is very poor and the major influence of entropy generation is attributable to friction. The maximum quantity of in-channel entropy generation happens in nanofluids with TiO2, CuO, Cu, and Ag nanoparticles, in turn, despite the fact in the microchannel this behavior is inverted, the minimum entropy generation occurs in nanofluids with CuO, Cu, Ag, and TiO2 nanoparticles, in turn. In the channel and microchannel for all nanofluids except water-TiO2, increasing the volume fraction of nanoparticles decreases entropy generation. In the channel and microchannel the total entropy generation increases by augmentation the Reynolds number.


Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Öztop ◽  
Jay M. Khodadadi

Abstract Numerical investigation of laminar forced convection of pulsating flow in a 90-deg bifurcation was performed with the finite volume method. The inlet velocity varies sinusoidally with time while constant wall temperature is utilized. The working fluid is air with constant properties and the numerical work is conducted for a range of the Reynolds numbers (100–2000), dividing flowrates (0.3–0.7) and Strouhal numbers (0.1–10). It is observed that the amplitudes of oscillating heat transfer are damped as the value of the Strouhal number increases. The average value of Nu number rises for higher Reynolds number and the dividing flowrate for the downstream wall of the y-channel branch. As the value of the dividing flowrate increases from 0.3 to 0.7, heat transfer is less effective in the vicinity of the branch at the Reynolds number of 500. The effects of the Reynolds number on the average Nu number variation is more pronounced for the y-branch wall for different values of dividing flowrates. Resonant type behavior of average Nu number is obtained for the y-branch channel for diving flowrates of 0.3 and 0.5.


Author(s):  
Qi Li ◽  
Xigang Yuan ◽  
Pierre Neveu ◽  
Gilles Flamant

Convective heat transfer enhancement can significantly improve the thermal efficiency in the conversion, utilization, recovery and storage of energy (in particular solar thermal). Modifying velocity field is the most direct approach to enhance convective heat transfer. However, in most cases the optimal velocity field is unknown and difficult to find even for an experienced researcher. In this paper, a predictive optimization methodology in convective heat transfer enhancement based on minimum entropy generation (MEG) principle was developed. A set of Euler’s equations were derived by the variation calculus to the Lagrange function established by governing equations, specific constraints and objective functional—total entropy generation rate. The solution of these equations resulted in the optimal velocity fields, leading to the minimum entropy generation. To validate and demonstrate the future application of this methodology to solar absorbers used to convert concentrated solar energy, the steady laminar convection heat transfer process in a two-dimensional channel with fixed heat flux boundaries was optimized for given total viscous dissipations. The numerical simulation results showed that lower value of maximum wall temperature was obtained by MEG optimization, which means cheaper and safer materials. The present work indicated that the new methodology could be a good guide in convective heat transfer enhancement design work, especially in CSP receivers.


Sign in / Sign up

Export Citation Format

Share Document