Advanced Optimization of Industrial Large-Scale Roll-to-Roll Systems Under Parametric Uncertainties

Author(s):  
J. Frechard ◽  
D. Knittel

In industrial plants some parameters can not be evaluated properly or they are varying with time. These parametric uncertainties has to be taken into account during the design process of industrial systems. In this work, the developped optimization approach is applied on an industrial roll-to-roll sytem. Such systems are commonly used to handle materials as polymer, metal, paper and textile. The key challenge is to move the web at the expected speed while maintaining the web tension in an acceptable range around its reference. Moreover, the Young’s modulus of the web is difficult to evaluate and it is varying with time due to temperature and moisture variations. This paper deals with the web tension controller synthesis on a large-scale roll-to-roll system with uncertain Young’s modulus. To synthesize web tension controllers, an H∞ approach is applied and adapted to the system with parametric uncertainties using multi-objective robust design optimization.

Mathematics ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 132 ◽  
Author(s):  
Harwinder Singh Sidhu ◽  
Prashanth Siddhamshetty ◽  
Joseph Kwon

Hydraulic fracturing has played a crucial role in enhancing the extraction of oil and gas from deep underground sources. The two main objectives of hydraulic fracturing are to produce fractures with a desired fracture geometry and to achieve the target proppant concentration inside the fracture. Recently, some efforts have been made to accomplish these objectives by the model predictive control (MPC) theory based on the assumption that the rock mechanical properties such as the Young’s modulus are known and spatially homogenous. However, this approach may not be optimal if there is an uncertainty in the rock mechanical properties. Furthermore, the computational requirements associated with the MPC approach to calculate the control moves at each sampling time can be significantly high when the underlying process dynamics is described by a nonlinear large-scale system. To address these issues, the current work proposes an approximate dynamic programming (ADP) based approach for the closed-loop control of hydraulic fracturing to achieve the target proppant concentration at the end of pumping. ADP is a model-based control technique which combines a high-fidelity simulation and function approximator to alleviate the “curse-of-dimensionality” associated with the traditional dynamic programming (DP) approach. A series of simulations results is provided to demonstrate the performance of the ADP-based controller in achieving the target proppant concentration at the end of pumping at a fraction of the computational cost required by MPC while handling the uncertainty in the Young’s modulus of the rock formation.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Philipp Bolz ◽  
Philipp Drechsel ◽  
Alexey Prosvetov ◽  
Pascal Simon ◽  
Christina Trautmann ◽  
...  

Targets of isotropic graphite and hexagonal boron nitride were exposed to short pulses of uranium ions with ∼1 GeV kinetic energy. The deposited power density of ∼3 MW/cm³ generates thermal stress in the samples leading to pressure waves. The velocity of the respective motion of the target surface was measured by laser Doppler vibrometry. The bending modes are identified as the dominant components in the velocity signal recorded as a function of time. With accumulated radiation damage, the bending mode frequency shifts towards higher values. Based on this shift, Young’s modulus of irradiated isotropic graphite is determined by comparison with ANSYS simulations. The increase of Young’s modulus up to 3 times the pristine value for the highest accumulated fluence of 3 × 1013 ions/cm2 is attributed to the beam-induced microstructural evolution into a disordered structure similar to glassy carbon. Young’s modulus values deduced from microindentation measurements are similar, confirming the validity of the method. Beam-induced stress waves remain in the elastic regime, and no large-scale damage can be observed in graphite. Hexagonal boron nitride shows lower radiation resistance. Circular cracks are generated already at low fluences, risking material failure when applied in high-dose environment.


2020 ◽  
Author(s):  
Guoyin Chen ◽  
Gang Wang ◽  
Xinrong Tan ◽  
Kai Hou ◽  
Qingshuo Meng ◽  
...  

Abstract Hydrogel optical light-guides have received substantial interest for applications such as deep-tissue biosensors, optogenetic stimulation and photomedicine due to their biocompatibility, (micro)structure control and tissue-like Young's modulus. However, despite recent developments, large-scale fabrication with a continuous synthetic methodology, which could produce core-sheath hydrogel fibers with the desired optical and mechanical properties suitable for deep-tissue applications, has yet to be achieved. In this study, we report a versatile concept of integrated light-triggered dynamic wet spinning capable of continuously producing core-sheath hydrogel optical fibers with tunable fiber diameters, and mechanical and optical propagation properties. Furthermore, this concept also exhibited versatility for various kinds of core-sheath functional fibers. The wet spinning synthetic procedure and fabrication process were optimized with the rational design of the core/sheath material interface compatibility [core = poly(ethylene glycol diacrylate-co-acrylamide); sheath = Ca-alginate], optical transparency, refractive index and spinning solution viscosity. The resulting hydrogel optical fibers exhibited desirable low optical attenuation (0.18 ± 0.01 dB cm−1 with 650 nm laser light), excellent biocompatibility and tissue-like Young's modulus (<2.60 MPa). The optical waveguide hydrogel fibers were successfully employed for deep-tissue cancer therapy and brain optogenetic stimulation, confirming that they could serve as an efficient versatile tool for diverse deep-tissue therapy and brain optogenetic applications.


2009 ◽  
Vol 620-622 ◽  
pp. 715-718 ◽  
Author(s):  
Tatsuya Ono ◽  
Koji Matsumaru ◽  
Isaías Juárez-Ramírez ◽  
Leticia M. Torres-Martínez ◽  
Kozo Ishizaki

Machines for manufacturing large scale flat displays are enlarging as the size of glasses increases. This work develops porous materials with a low thermal expansion coefficient and a high Young’s modulus. SiC and LiAlSiO4 were used for a positive and a negative thermal expansion materials, respectively. Compositions of powders for porous materials were determined to obtain a desirable Young’s modulus and thermal expansion coefficient by using SiC-VBM-LiAlSiO4 phase diagram at 20 % of porosity. The empirical values of Young’s modulus and a thermal expansion coefficient are close to the theoretical values by using the diagram. Fabricated porous material had high enough Young’s modulus of 87 GPa, and low enough thermal expansion coefficient of 2 x 10-6 K-1 at temperatures ranging from -17 °C to 190 °C with 22 % of porosity.


2006 ◽  
Vol 324-325 ◽  
pp. 239-242 ◽  
Author(s):  
Xiao Bin Yang ◽  
Zhuo Zhuang ◽  
Xue Feng Yao

A crack propagation perpendicular to gradient in a large scale functionally gradient materials, which has (1) a linear variation of Young’s modulus with a constant mass density and Poisson’s ratio, and (2) a exponential variation of Young’s modulus with a constant mass density and Poisson’s ratio, is modelled by finite element methods. Based on the experimental result of large scale functionally gradient materials, the dynamic propagation process of the FGMs is modelled and the dynamic parameters, like the energy release rate and crack tip opening angle, are calculated through a generation phase.


2016 ◽  
Vol 4 (38) ◽  
pp. 8884-8888 ◽  
Author(s):  
Janghoon Park ◽  
Hyi Jae Kang ◽  
Hyogeun Gil ◽  
Kee-Hyun Shin ◽  
Hyunkyoo Kang
Keyword(s):  
Hot Air ◽  
The Web ◽  

The sintering energy was quantified and evaluated based on theoretical and experimental calculations. Moreover, the effect of the sintering energy on the web tension was simultaneously considered.


Author(s):  
Yuh-Chung Hu ◽  
Wei-Hsin Gau ◽  
Wei-Hsiang Tu

This paper is aimed at developing a high precision algorithm for extracting the Young’s modulus of thin films through the capacitance-voltage measurement of microstructures at wafer level. Two flat micro cantilever beams made of single crystalline silicon are demonstrated. The average value of extracted Young’s modulus in (110) crystalline plane by the present methodology is about 169 GPa, compared to the well-defined value of 168 GPa, the error percentage is within 1% and the high precision and repeatability of the present methodology are verified. Since the driving and measuring signals of the present methodology are both electric, they could be accomplished using existing semiconductor testing equipments through probing on the bonding pads of devices. Because hardware replacement could be avoided, the present methodology shows substantial advantage over other property-extraction methods for large-scale implementation in semiconductor or MEMS fabs.


2014 ◽  
Vol 223 ◽  
pp. 374-382
Author(s):  
Mirosław Neska ◽  
Andrzej Majcher

Web guiding used in roll-to-roll material processing machinery is connected with a number of issues including the maintenance of the web tension, the precision of the lateral web displacement, the accuracy of transport positioning of the web, and the selection of web transport velocity. The article presents the precision of the lateral web displacement issue during the start-stop work mode of the web transport. A model of a system for automatic web guiding is shown. The requirements of the lateral web guiding for transporting material over rollers in a processing machine working in a start-stop mode are presented. The control system is discussed, particularly its hardware structure and behaviour. The obtained functionality of the control system enables its application in roll-to-roll material processing machines, working either in the start-stop mode or continuously.


1998 ◽  
Vol 13 (5) ◽  
pp. 1390-1400 ◽  
Author(s):  
J. Alcalá ◽  
A. E. Giannakopoulos ◽  
S. Suresh

Elastic and plastic properties of metals and Young's modulus of ceramics are determined in the microindentation regime by continuous measurements of load versus depth of penetration with spherical indenters. Calibration procedures, usually applied in nanoindentation experiments, are not needed in the microregime where spherical indenters (rather than sharp indenters with microscopical spherical tips) can be manufactured. As indenters of larger diameters are used, the elastic response of the specimen can be probed during the loading stage of the indentation tests (and not only during unloading, as is the case with nanoindenters). Hence, an accurate determination of Young's modulus can be achieved without a prior knowledge of possible “piling up” or “sinking in” which may occur at the perimeter of the contact area. The contact response of materials is shown to undergo four distinct regions: (i) pre-Hertzian regime, (ii) Hertzian regime, (iii) small-scale plasticity, and (iv) large-scale plasticity. A general methodology for estimation of yield strength and hardening exponent of metals is proposed in the last regime.


Sign in / Sign up

Export Citation Format

Share Document