An Experimental Study of Controlled Gas-Phase Combustion in Porous Media for Enhanced Recovery of Oil and Gas

Author(s):  
Javier E. Sanmiguel ◽  
S. A. (Raj) Mehta ◽  
R. Gordon Moore

Abstract Gas-phase combustion in porous media has many potential applications in the oil and gas industry. Some of these applications are associated with: air injection based improved oil recovery (IOR) processes, formation heat treatment for remediation of near well-bore formation damage, downhole steam generation for heavy oil recovery, in situ preheating of bitumen for improved pumping, increased temperatures in gas condensate reservoirs, and improved gas production from hydrate reservoirs. The available literature on gas-phase flame propagation in porous media is limited to applications at atmospheric pressure and ambient temperature, where the main application is in designing burners for combustion of gaseous fuels having low calorific value. The effect of pressure on gas-phase combustion in porous media is not well understood. Accordingly, this paper will describe an experimental study aimed at establishing fundamental information on the various processes and relevant controlling mechanisms associated with gas-phase combustion in porous media, especially at elevated pressures. A novel apparatus has been designed, constructed and commissioned in order to evaluate the effects of controlling parameters such as operating pressure, gas flow rate, type and size of porous media, and equivalence ratio on combustion characteristics. The results of this study, concerned with lean mixtures of natural gas and air and operational pressures from atmospheric (88.5 kPa or 12.8 psia) to 433.0 kPa (62.8 psia), will be presented. It will be shown that the velocity of the combustion front decreases as the operating pressure of the system increases, and during some test operating conditions, the apparent burning velocities are over 40 times higher than the open flame laminar burning velocities.

2003 ◽  
Vol 125 (1) ◽  
pp. 64-71 ◽  
Author(s):  
Javier E. Sanmiguel ◽  
S. A. (Raj) Mehta ◽  
R. Gordon Moore

This paper describes an experimental study aimed at establishing fundamental information on the various processes and relevant controlling mechanisms associated with gas-phase combustion in porous media, especially at elevated pressures. A novel apparatus has been designed, constructed and commissioned in order to evaluate the effects of controlling parameters such as operating pressure, gas flow rate, type and size of porous media, and equivalence ratio on combustion characteristics. The results of this study, concerned with lean mixtures of natural gas and air and operational pressures from atmospheric (88.5 kPa or 12.8 psia) to 433.0 kPa (62.8 psia), will be presented. It will be shown that the velocity of the combustion front decreases as the operating pressure of the system increases, and during some test operating conditions, the apparent burning velocities are over 40 times higher than the open flame laminar burning velocities.


Author(s):  
Pertiwi Andarani ◽  
Arya Rezagama

The exploration and production process of oil and its supporting operations always generates wasteas by-product. If they are uncontrolled, it might decrease the environmental quality. Thus, it isnecessary to manage and treat the waste in order to meet the regulation standard of quality andquantity. PT XYZ is an energy company, particularly oil and gas production, which its productionactivity generate a large amount of waste as well as produced water. Thus, PT XYZ must havefacilities or produced water handling plant which could minimize pollution caused by produced water.PT XYZ already has a system of produced water handling with recycling principle. After oil and waterseparation including water treating at Water Treating Plant (WTP), produced water will be used forsteam injection. This is the part of enhanced oil recovery by steam flooding in Duri Field. Besides,produced water could be used as backwash water at WTP, that is Oil Removal Filter (ORF) and WaterSoftener, which is called brine water. If the produced water and brine water is over load the capacity ofoil enhanced recovery injection, it might be disposed through injection to Disposal Well and there arecertain condition that produced water should be discharged into canal. The objective f this study is toanalyze the performance of a water treating plant in PT XYZ. Water Treating Plant is a facility fortreating produced water. Basically, WTP is on good condition and each unit has high efficiency forseparating oil and water (60-99%). Horizontal velocity at pit #A of API Separator was larger than thedesign criteria. In addition, Water Softeners have efficiency until 99% for the hardness.


Author(s):  
Miel Hofmann ◽  
◽  
Sudad Al-Obaidi ◽  
I. Kamensky ◽  

As a result of flooding and accumulations of liquid at the bottomholes, the operating conditions of gas wells become complicated, so that they end up self-squeezing and losing of gas production. A method is proposed for determining the technological parameters of operation of the gas wells with the purpose of removing liquid from the bottom of the wells. Data from the gas dynamics and special studies were used to develop this method, which has been tested on one of the oil and gas condensate fields. It offers the possibility to increase the accuracy of the information provided by the fund and to ensure that the production wells are operated as efficiently as possible with the use of this method. In the case of liquid accumulation in the well that is insignificant, or when water is present in the well, the technique is beneficial in that it allows determining the technological parameters of well operation and ensuring the removal of the liquid from the bottom of the well.


Author(s):  
Graeme G. King ◽  
Satish Kumar

Masdar is developing several carbon capture projects from power plants, smelters, steel works, industrial facilities and oil and gas processing plants in Abu Dhabi in a phased series of projects. Captured CO2 will be transported in a new national CO2 pipeline network with a nominal capacity of 20×106 T/y to oil reservoirs where it will be injected for reservoir management and sequestration. Design of the pipeline network considered three primary factors in the selection of wall thickness and toughness, (a) steady and transient operating conditions, (b) prevention of longitudinal ductile fractures and (c) optimization of total project owning and operating costs. The paper explains how the three factors affect wall thickness and toughness. It sets out code requirements that must be satisfied when choosing wall thickness and gives details of how to calculate toughness to prevent propagation of long ductile fracture in CO2 pipelines. It then uses cost optimization to resolve contention between the different requirements and arrive at a safe and economical pipeline design. The design work selected a design pressure of 24.5 MPa, well above the critical point for CO2 and much higher than is normally seen in conventional oil and gas pipelines. Despite its high operating pressure, the proposed network will be one of the safest pipeline systems in the world today.


2021 ◽  
Author(s):  
L. Hendraningrat

In low oil price environments, conducting affordable enhanced oil recovery (EOR) projects can be very challenging. One item of interest for successful future EOR should be in how produced fluids are treated and how to achieve cost-efficiency. Nanoflooding, is an emerging EOR technique, which has attracted deployment in recent years. Meanwhile, Indonesia continues to progress towards the national oil and gas production target of one million barrels per day by 2030. This paper presents the observation of opportunities and challenges of using nanoflooding to enable oil and gas production in Indonesia to achieve its desired targets. The study began by mapping the pain points in major oilfields in Indonesia. We observed and discussed the advantage and limitation of traditional mature EOR techniques, status, and ongoing application of EOR in Indonesia. Then, we briefly explained the main reasons why nanoflooding can be considered for future implementation in accelerating oil production in Indonesia, including a discussion about a successful pilot test. As an emerging EOR technique, nanoflooding can be considered as a cost-efficient technique. Silica-based nanofluid can be accessed in a cost-efficient manner and can be executed from an implementation standpoint considering surface facilities. The mechanism that is introduced can help to displace incremental oil more effectively since it can go inside pore throats due to the nano-size. We observed several recognized benefits and challenges to deploy nanoflooding in Indonesia. Based on this study, nanoflooding is very attractive and has potential to be implemented.


Author(s):  
B.M. Das ◽  
D. Dutta

Nanotechnology encompasses the science and technology of objects with sizes ranging from 1 nm to 100 nm. Today, exploration and production from conventional oil and gas wells have reached a stage of depletion. Newer technologies have been developed to address this problem. Maximum oil production at a minimum cost is currently a huge challenge. This paper reviews nanotechnology applications in the oil and gas production sector, including in the fields of exploration, drilling, production, and waste management in oil fields, as well as their environmental concerns. The paper reviews experimental observations carried out by various researchers in these fields. The effect of various nanoparticles, such as titanium oxide, magnesium oxide, zinc oxide, copper oxide, and carbon nanotubes in drilling fluids and silica nanoparticles in enhanced oil recovery, has been observed and studied. This paper gives a detailed review of the benefits of nanotechnology in oil exploration and production. The fusion of nanotechnology and petroleum technology can result in great benefits. The physics and chemistry of nanoparticles and nanostructures are very new to petroleum technology. Due to the greater risk associated with adapting new technology, nanotechnology has been slow to gain widespread acceptance in the oil and gas industries. However, the current economic conditions have become a driving force for newer technologies.


2015 ◽  
Vol 15 (20) ◽  
pp. 28659-28697 ◽  
Author(s):  
B. Yuan ◽  
J. Liggio ◽  
J. Wentzell ◽  
S.-M. Li ◽  
H. Stark ◽  
...  

Abstract. We describe the results from online measurements of nitrated phenols using a time of flight chemical ionization mass spectrometer (ToF-CIMS) with acetate as reagent ion in an oil and gas production region in January and February of 2014. Strong diurnal profiles were observed for nitrated phenols, with concentration maxima at night. Based on known markers (CH4, NOx, CO2), primary emissions of nitrated phenols were not important in this study. A box model was used to simulate secondary formation of phenol, nitrophenol (NP) and dinitrophenols (DNP). The box model results indicate that oxidation of aromatics in the gas phase can explain the observed concentrations of NP and DNP in this study. Photolysis was the most efficient loss pathway for NP in the gas phase. We show that aqueous-phase reactions and heterogeneous reactions were minor sources of nitrated phenols in our study. This study demonstrates that the emergence of new ToF-CIMS (including PTR-TOF) techniques allows for the measurement of intermediate oxygenates at low levels and these measurements improve our understanding of the evolution of primary VOCs in the atmosphere.


2021 ◽  
Author(s):  
Roger Machado ◽  
Paola Andrea de Sales Bastos ◽  
Danny Daniel Socorro Royero ◽  
Eugene Medvedovski

Abstract Components and tubulars in down-hole applications for oil and gas production must withstand severe wear (e.g. erosion, abrasion, rod wear) and corrosion environments. These challenges can be addressed through boronizing of steels achieved employing chemical vapour deposition-based process. This process permits protection of the entire working surfaces of production tubulars up to 12m in length, as well as various sizes of complex shaped components. The performance of these tubulars and components have been evaluated in abrasion, erosion, and corrosion conditions simulating the environment and service conditions experienced in down-hole oil and gas production. Harsh service conditions are very common in the oil industry and the combination of abrasion, friction-induced wear, erosion, and corrosion environments can be quite normal in wells producing with the assistance of artificial lift methods. The boronized steel products demonstrated significantly higher performance in terms of material loss when exposed to harsh operating conditions granting a significant extension of the component service life in wear and corrosion environments. As opposed to many coating technologies, the boronizing process provides high integrity finished products without spalling or delamination on the working surface and minimal dimensional changes. Successful application of tubulars and components with the iron boride protective layer in oil and gas production will be discussed and presented.


2021 ◽  
Author(s):  
Ameria Eviany ◽  
Ifani Ramadhani ◽  
Cio Mario ◽  
Anang Nugrahanto ◽  
Harris Pramana ◽  
...  

Abstract The two most common challenges on the oil and gas production today are the flowing production under natural pressure depletion and the surface facility capacity limitation. Ujung Pangkah field is no exception regarding finding a method to overcome this problem. It compelled to embolden many strategies to ensure the continuity of oil and gas production. Production enhancement initiatives were delivered through both Subsurface and Surface sides. SAKA Energi Indonesia, as the operator of Pangkah PSC, proved that Surface Modification approach increased the oil and gas production. Historically, gas lift injection dependency in all production wells force a continuous operation of Gas Lift Compressor (GLC) unit to supply gas lift. However, GLC as a production backbone is no longer sustainable, it has reached its maximum limit and unable to fulfil the gas lift rate requirement for all wells. Furthermore, the changing flowing conditions – low gas feeding - from wells are relatable to most of the critical surface equipment. Considering all the challenges faced in Ujung Pangkah field, SAKA developed initiatives on MP Compressor and GLC configuration by performing compressors restaging. The equipment modifications started out with restaging the MP Compressor (MPC) that led to MP Separator operating pressure reduction – from 22 barg down to 16 barg. Pressure changes on MP Separator also directly affected the GLC system since it works on the same pipeline header. Technical assessment analysis for other corresponding equipment were performed to verify if each of the equipment's operating boundary could accommodate lower pressure at the facility. Compressor restaging has direct and indirect impacts. The direct impacts are decrease in suction pressure, increase in gas lift rates, and decrease in flowing of suction pressure due to the pressure at wellhead. The indirect impact is production gain from wells by lowering the wellhead pressure. Particularly in the pressure depletion case, this initiative could extend the lifetime of the wells. Production gain was quantified after compressor restaging and pressure system lower to 16 barg. The gain from this method was 3 MMscfd and ~400 BOPD.


Sign in / Sign up

Export Citation Format

Share Document