PIV Measurements of the Turbulent Secondary Flow in a Three-Dimensional Wall Jet

Author(s):  
Lhendup Namgyal ◽  
Joseph W. Hall

The lateral half width of the turbulent three-dimensional wall jet is typically five to eight times larger than the vertical half width normal to the wall. Although, the reason for this behavior is not fully understood, it is known to be caused by strong secondary flows that develop in the jet due to presence of the wall. The source of the secondary flow in the jet has been attributed previously with both mean vorticity reorientation and to anisotropy in the Reynolds normal stresses, but until now there have been no measurements of these quantities in this flow. Particle Image Velocimetry (PIV) measurements are used herein to measure the Reynolds stresses that contribute to the secondary flow in a turbulent three-dimensional wall jet formed using a circular contoured nozzle with exit Reynolds number of 250,000. In particular, the Reynolds shear stress, vw was found to be significantly smaller throughout the jet than the differences in the Reynolds normal stresses (v2 − w2).

2016 ◽  
Vol 800 ◽  
pp. 613-644 ◽  
Author(s):  
L. Namgyal ◽  
J. W. Hall

The lateral half-width of the turbulent three-dimensional wall jet is typically five to eight times larger than the vertical half-width normal to the wall. Although the reason for this behaviour is not fully understood, it is caused by mean secondary flows that develop in the jet due to the presence of the wall. The origin of the secondary flow has been associated previously with both vorticity reorientation and also gradients in the Reynolds stresses, although this has not been directly quantified as yet. The present investigation focuses on a wall jet formed using a circular contoured nozzle with exit Reynolds number of 250 000. Stereoscopic particle image velocimetry measurements are used herein to measure the three-component velocity, thereby allowing access to the full Reynolds stress tensor that contributes to the secondary flow in a turbulent three-dimensional wall jet. Throughout the jet, the Reynolds normal stress ($\overline{u^{2}}$) makes the largest contribution to the Reynolds stress field whereas Reynolds shear stress ($\overline{vw}$) is found to be negligible when compared with other stresses. In particular, the differences in the Reynolds normal stresses ($\overline{v^{2}}-\overline{w^{2}}$) are found to be significantly larger than $\overline{vw}$; these terms are important for the generation of turbulence secondary flow in the wall jet. Above all, the differences in the Reynolds normal stresses are oriented to reinforce the near-wall streamwise vorticity, and thus contribute to the large lateral growth of this flow. The contours of the turbulent kinetic budget indicate that the turbulent energy budget obtained on the jet centreline is different from that obtained off of the jet centreline.


Author(s):  
Yoshihiro Kubota ◽  
Hiroshi Higuchi

Human foot motions such as walking and foot tapping detach the particulate matter on the floor and redistribute it, increasing the particle concentration in air. The objective of this paper is to experimentally investigate the mechanism of particle resuspension and redistribution due to human foot motion. In particular, generation and deformation of vortex produced by the foot motion and how they are affected by the shape of sole have been examined. The experiments were carried out by particle flow visualization and the Particle Image Velocimetry (PIV) measurements in air, and dye flow visualization in water. The flow visualizations with human foot tapping and stomping were also carried out in order to elucidate the particle resuspension in real situations. In a laboratory experiment, the foot was modeled either as an elongated plate or a foot wearing a slipper, moving normal to the ground downward or upward. To focus on the aerodynamic effect, the model foot was stopped immediately above the floor before contacting the floor. The results indicated that the particles were resuspended both in downward motion and in upward motion of the foot. The particle resuspension and redistribution were associated with the wall jet between the foot and floor and the vortex dynamics. With an elongated plate, three-dimensional vortex structure strongly affected the particle redistribution.


Author(s):  
Kofi K. Adane ◽  
Mark F. Tachie

A particle image velocimetry technique was employed to study three-dimensional laminar wall jet flows of a non-Newtonian shear-thinning fluid. The wall jet was created using a circular pipe of diameter 7 mm and flows into an open channel. The Reynolds numbers based on the pipe diameter and jet exit velocity were varied from 250 to 800. The PIV measurements were performed in various streamwise-transverse and streamwise-spanwise planes. From these measurements, the velocity profiles, jet growth rate and spread rates were obtained to study the characteristics of three-dimensional wall jet flows of a non-Newtonian fluid.


Author(s):  
Martin Agelinchaab ◽  
Mark F. Tachie

This paper reports experimental study of three-dimensional turbulent wall jet over smooth and rough surfaces. The wall jet was created using a square nozzle of size 6 mm and flow into an open channel. The experiments were performed at a Reynolds number based on the nozzle size and jet exit velocity of 4800. A particle image velocimetry was used to conduct detailed measurements over the smooth and rough surfaces at various streamwise-transverse and streamwise-spanwise planes. From these measurements, mean velocities and turbulent quantities were extracted at selected locations. The distributions of the mean velocities, turbulent intensities and Reynolds shear stress were used to provide insight into the characteristics of three-dimensional wall jet flows over smooth and rough surface.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 659 ◽  
Author(s):  
Ruonan Bai ◽  
Dejun Zhu ◽  
Huai Chen ◽  
Danxun Li

The present paper aims to gain deeper insight into the evolution of secondary flows in open channel bend. A U-shaped open channel with long straight inflow/outflow reaches was used for experiments. Efforts were made to precisely specify flow conditions and to achieve high precision measurement of quasi-three-dimensional velocities with a multi-pass, two-dimensional PIV (Particle Image Velocimetry) method. The experimental results show that the flow begins to redistribute before entering the bend and it takes a long distance to re-establish to uniform conditions after exiting the bend. Complex secondary flow patterns were found to be present in the bend, as well as in the straight inflow and outflow reaches. A “self-breaking” (process was identified, which correlates stream-wise velocity with the intensity of flow circulation.


1993 ◽  
Vol 115 (1) ◽  
pp. 172-175 ◽  
Author(s):  
Hyon Kook Myong

The generation mechanism of turbulence-driven secondary flows in a square duct is numerically investigated in the present study by using an anisotropic low-Reynolds-number k–ε turbulence model. Special attention is directed to the distributions of turbulence quantities, which are responsible for the secondary flow generation, such as the anisotropy of normal Reynolds stresses and the secondary Reynolds shear stress acting on the cross-sectional plane. The vorticity transport process is also discussed in detail, based on the numerical evaluation of the individual terms which appear in the streamwise vorticity transport equation.


Author(s):  
A. Perdichizzi ◽  
V. Dossena

This paper describes the results of an experimental investigation of the three-dimensional flow downstream of a linear turbine cascade at off-design conditions. The tests have been carried out for five incidence angles from −60 to +35 degrees, and for three pitch-chord ratios: s/c = 0.58,0.73,0.87. Data include blade pressure distributions, oil flow visualizations, and pressure probe measurements. The secondary flow field has been obtained by traversing a miniature five hole probe in a plane located at 50% of an axial chord downstream of the trailing edge. The distributions of local energy loss coefficients, together with vorticity and secondary velocity plots show in detail how much the secondary flow field is modified both by incidence and cascade solidity variations. The level of secondary vorticity and the intensity of the crossflow at the endwall have been found to be strictly related to the blade loading occurring in the blade entrance region. Heavy changes occur in the spanwise distributions of the pitch averaged loss and of the deviation angle, when incidence or pitch-chord ratio is varied.


Author(s):  
S. Friedrichs ◽  
H. P. Hodson ◽  
W. N. Dawes

The endwall film-cooling cooling configuration investigated by Friedrichs et al. (1996, 1997) had in principle sufficient cooling flow for the endwall, but in practice, the redistribution of this coolant by secondary flows left large endwall areas uncooled. This paper describes the attempt to improve upon this datum cooling configuration by redistributing the available coolant to provide a better coolant coverage on the endwall surface, whilst keeping the associated aerodynamic losses small. The design of the new, improved cooling configuration was based on the understanding of endwall film-cooling described by Friedrichs et al. (1996, 1997). Computational fluid dynamics were used to predict the basic flow and pressure field without coolant ejection. Using this as a basis, the above described understanding was used to place cooling holes so that they would provide the necessary cooling coverage at minimal aerodynamic penalty. The simple analytical modelling developed in Friedrichs et al. (1997) was then used to check that the coolant consumption and the increase in aerodynamic loss lay within the limits of the design goal. The improved cooling configuration was tested experimentally in a large scale, low speed linear cascade. An analysis of the results shows that the redesign of the cooling configuration has been successful in achieving an improved coolant coverage with lower aerodynamic losses, whilst using the same amount of coolant as in the datum cooling configuration. The improved cooling configuration has reconfirmed conclusions from Friedrichs et al. (1996, 1997); firstly, coolant ejection downstream of the three-dimensional separation lines on the endwall does not change the secondary flow structures; secondly, placement of holes in regions of high static pressure helps reduce the aerodynamic penalties of platform coolant ejection; finally, taking account of secondary flow can improve the design of endwall film-cooling configurations.


Author(s):  
Huimin Tang ◽  
Shuaiqiang Liu ◽  
Hualing Luo

Profiled endwall is an effective method to improve aerodynamic performance of turbine. This approach has been widely studied in the past decade on many engines. When automatic design optimisation is considered, most of the researches are usually based on the assumption of a simplified simulation model without considering cooling and rim seal flows. However, many researchers find out that some of the benefits achieved by optimization procedure are lost when applying the high-fidelity geometry configuration. Previously, an optimization procedure has been implemented by integrating the in-house geometry manipulator, a commercial three-dimensional CFD flow solver and the optimization driver, IsightTM. This optimization procedure has been executed [12] to design profiled endwalls for a turbine cascade and a one-and-half stage axial turbine. Improvements of the turbine performance have been achieved. As the profiled endwall is applied to a high pressure turbine, the problems of cooling and rim seal flows should be addressed. In this work, the effects of rim seal flow and cooling on the flow field of two-stage high pressure turbine have been presented. Three optimization runs are performed to design the profiled endwall of Rotor-One with different optimization model to consider the effects of rim flow and cooling separately. It is found that the rim seal flow has a significant impact on the flow field. The cooling is able to change the operation condition greatly, but barely affects the secondary flow in the turbine. The influences of the profiled endwalls on the flow field in turbine and cavities have been analyzed in detail. A significant reduction of secondary flows and corresponding increase of performance are achieved when taking account of the rim flows into the optimization. The traditional optimization mechanism of profiled endwall is to reduce the cross passage gradient, which has great influence on the strength of the secondary flow. However, with considering the rim seal flows, the profiled endwall improves the turbine performance mainly by controlling the path of rim seal flow. Then the optimization procedure with consideration of rim seal flow has also been applied to the design of the profiled endwall for Stator Two.


1990 ◽  
Vol 112 (4) ◽  
pp. 1063-1069 ◽  
Author(s):  
M. Choi ◽  
Y. T. Lin ◽  
R. Greif

The secondary flows resulting from buoyancy effects in respect to the MCVD process have been studied in a rotating horizontal tube using a perturbation analysis. The three-dimensional secondary flow fields have been determined at several axial locations in a tube whose temperature varies in both the axial and circumferential directions for different rotational speeds. For small rotational speeds, buoyancy and axial convection are dominant and the secondary flow patterns are different in the regions near and far from the torch. For moderate rotational speeds, the effects of buoyancy, axial and angular convection are all important in the region far from the torch where there is a spiraling secondary flow. For large rotational speeds, only buoyancy and angular convection effects are important and no spiraling secondary motion occurs far downstream. Compared with thermophoresis, the important role of buoyancy in determining particle trajectories in MCVD is presented. As the rotational speed increases, the importance of the secondary flow decreases and the thermophoretic contribution becomes more important. It is noted that thermophoresis is considered to be the main cause of particle deposition in the MCVD process.


Sign in / Sign up

Export Citation Format

Share Document