Analytical and Experimental Characterization of Flow in Slowly-Varying Cross-Section Microchannels

Author(s):  
M. Akbari ◽  
M. Bahrami ◽  
D. Sinton

This paper outlines a novel approximate solution for determining the pressure drop of laminar, single-phase flow in slowly-varying microchannels of arbitrary cross-section. The proposed analysis is general and applicable to symmetric and asymmetric microchannel cross-sections, as examples compact relationships are reported for elliptical and rectangular shapes for three common wall profiles of linear, sinusoidal and hyperbolic. An experimental setup is designed and pressure drop measurements are conducted to validate the proposed model for streamwised periodic microchannels with rectangular cross-section and linear wall with a range of channel geometrical parameters such as aspect ratio and channel slope. The model is also compared against the numerical and experimental data of hyperbolic contraction with rectangular cross-section collected by others. It is observed that although the proposed model is based on the solution of the elliptical cross-section, it can accurately predict the pressure drop in microchannels of rectangular cross-section.

2006 ◽  
Vol 128 (5) ◽  
pp. 1036-1044 ◽  
Author(s):  
M. Bahrami ◽  
M. M. Yovanovich ◽  
J. R. Culham

The pressure drop of fully developed, laminar, incompressible flow in smooth mini- and microchannels of arbitrary cross-section is investigated. A compact approximate model is proposed that predicts the pressure drop for a wide variety of shapes. The model is only a function of geometrical parameters of the cross-section, i.e., area, perimeter, and polar moment of inertia. The proposed model is compared with analytical and numerical solutions for several shapes. Also, the comparison of the model with experimental data, collected by several researchers, shows good agreement.


Author(s):  
Ehsan Sadeghi ◽  
Majid Bahrami ◽  
Ned Djilali

In many practical instances such as basic design, parametric study, and optimization analysis of thermal systems, it is often very convenient to have closed form relations to obtain the trends and a reasonable estimate of the Nusselt number. However, finding exact solutions for many practical singly-connected cross-sections, such as trapezoidal microchannels, is complex. In the present study, the square root of cross-sectional area is proposed as the characteristic length scale for Nusselt number. Using analytical solutions of rectangular, elliptical, and triangular ducts, a compact model for estimation of Nusselt number of fully-developed, laminar flow in microchannels of arbitrary cross-sections with “H1” boundary condition (constant axial wall heat flux with constant peripheral wall temperature) is developed. The proposed model is only a function of geometrical parameters of the cross-section, i.e., area, perimeter, and polar moment of inertia. The present model is verified against analytical and numerical solutions for a wide variety of cross-sections with a maximum difference on the order of 9%.


Author(s):  
S Emami ◽  
MH Dibaei Bonab ◽  
M Mohammadiun ◽  
H Mohammadiun ◽  
M Sadi

Few papers investigated the effect of different nano-fluids and geometrical parameters of the micro channels on the performance of heat sinks. In this study, Nusselt number and pressure drop are investigated in differential geometry and Reynolds numbers. Then the effect of the micro-channel is studied for different heat flux. The results show that hexagonal micro-channels represents a better performance than the rectangular and the heat transfer of without using nano-particles in the hexagonal cross-section is about 9% higher than the rectangular cross-section and with the presence of nanoparticles (Al2O3 - CUO- TiO2, φ  =  4%), heat transfer is about 30 to 40% higher than the base liquid.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
M. Bahrami ◽  
A. Tamayol ◽  
P. Taheri

In the present study, a compact analytical model is developed to determine the pressure drop of fully-developed, incompressible, and constant properties slip-flow through arbitrary cross section microchannels. An averaged first-order Maxwell slip boundary condition is considered. Introducing a relative velocity, the difference between the bulk flow and the boundary velocities, the axial momentum reduces to Poisson’s equation with homogeneous boundary condition. Square root of area is selected as the characteristic length scale. The model of Bahrami et al. (2006, “Pressure Drop of Laminar, Fully Developed Flow in Microchannels of Arbitrary Cross Section,” ASME J. Fluids Eng., 128, pp. 1036–1044), which was developed for no-slip boundary condition, is extended to cover the slip-flow regime in this study. The proposed model for pressure drop is a function of geometrical parameters of the channel: cross sectional area, perimeter, polar moment of inertia, and the Knudsen number. The model is successfully validated against existing numerical and experimental data collected from different sources in literature for several shapes, including circular, rectangular, trapezoidal, and double-trapezoidal cross sections and a variety of gases such as nitrogen, argon, and helium.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Mohsen Akbari ◽  
David Sinton ◽  
Majid Bahrami

Pressure driven liquid flow through rectangular cross-section microchannels is investigated experimentally. Polydimethylsiloxane microchannels are fabricated using soft lithography. Pressure drop data are used to characterize the friction factor over a range of aspect ratios from 0.13 to 0.76 and Reynolds number from 1 to 35 with distilled water as working fluid. Results are compared with the general model developed to predict the fully developed pressure drop in arbitrary cross-section microchannels. Using available theories, effects of different losses, such as developing region, minor flow contraction and expansion, and streaming potential on the measured pressure drop, are investigated. Experimental results compare well with the theory based on the presure drop in channels of arbitrary cross section.


Author(s):  
A. Tamayol ◽  
M. Bahrami ◽  
P. Taheri

In the present study, a compact analytical model is developed to determine the pressure drop of fully-developed, incompressible, and constant properties slip-flow through arbitrary cross-section microchannels. An averaged first-order Maxwell slip boundary condition is considered. Introducing a relative velocity, the difference between the bulk flow and the boundary velocities, the axial momentum reduces to the Poisson’s equation with homogeneous boundary condition. Square root of area is selected as the characteristic length scale. Bahrami et al.’s model, which was developed no-slip boundary condition, is extended to cover the slip-flow regime in this study. The proposed model is a function of geometrical parameters of the channel: cross-sectional area, perimeter, polar moment of inertia and the Knudsen number. The model is successfully validated against existing numerical and experimental data from different sources in the literature for several shapes, including: circular, rectangular, trapezoidal, and double-trapezoidal cross-sections and a variety of gases such as: nitrogen, argon, and helium.


1969 ◽  
Vol 91 (3) ◽  
pp. 345-354 ◽  
Author(s):  
David P. Fleming ◽  
E. M. Sparrow

A general method of analysis is presented for determining the developing velocity field and pressure drop for laminar flow in the entrance region of ducts having arbitrary cross sections. Application of the solution method is made to rectangular ducts and to triangular ducts. Available experimental data are compared with the analytical results and good agreement is found to prevail. Development characteristics for six ducts are brought together and compared, and various trends are identified.


Author(s):  
Vladimir I. Kolchunov ◽  
Aleksej I. Demyanov ◽  
Nikolay V. Naumov

Aim of research - to continue the development of methods for determining the stress-strain state of rods during torsion using materials resistance methods. Methods. A new approach for determining tangential torsional stresses for arbitrary cross sectional rods, based on simplified assumptions of material resistance, is proposed. The main feature of this approach is the approximation of rectangular or any complex cross section of reinforced concrete structures by describing a large circle around the cross section and splitting it into small squares with circles inscribed into them. Results. Three theorems have been formulated, the first of which relates the accumulation of tangential stresses (increments) from the edges of a rectangle to the middle of a rectangular section with the formula for determining tangent stresses for round sections. The second theorem allows to establish a connection between the tangential stresses calculated for each of the small squares-circles and the tangent stresses of the large circle through their increments. The third theorem makes it possible to find tangential stresses for each of the small square circles. The proposed approach allows to remove the need to use special tables for the calculation and not only in the elastic stage. It also makes it possible to separate the stress-strain state in the whole set of round cross-sections from the additional field caused by the deplanation of the rectangular cross-section. In addition, the proposed approach makes it possible to take into account the concentration of angular deformations in the incoming angles and other places with changing geometric parameters.


1964 ◽  
Vol 86 (3) ◽  
pp. 620-626 ◽  
Author(s):  
T. S. Lundgren ◽  
E. M. Sparrow ◽  
J. B. Starr

A general analytical method has been devised for determining the pressure drop due to flow development in the entrance region of ducts of arbitrary cross section. The essential feature of the analysis is that the pressure drop can be determined without actually solving for the entrance-region velocity development. Instead, the calculation only requires a knowledge of the fully developed velocity profile. Application of the method is made to a variety of cross sections including the circular tube, elliptical ducts, rectangular ducts, isosceles triangular ducts, and annular ducts. Numerical results are presented and comparisons are made with available experiments and with prior analysis.


Aerodynamics ◽  
2021 ◽  
Author(s):  
Vladimir Frolov

The paper presents results obtained by the author for wing-body interference. The lift-curve slopes of the wing-body combinations are considered. A 2D potential model for cross-flow around the fuselage and a discrete vortex method (DVM) are used. Flat wings of various forms and the circular and elliptical cross sections of the fuselage are considered. It was found that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. An experimental and theoretical data obtained by other authors earlier confirm this result. Investigations to optimize the wing-body combination were carried within the framework of the proposed model. It was revealed that the maximums of the lift-curve slopes for the optimal midwing configuration with elliptical cross-section body had a sufficiently large relative width (more than 30% of the span wing). The advantage of the wing-fuselage combination with a circular cross section over an isolated wing for wing aspect ratio greater than 6 can reach 7.5% at the relative diameter of fuselage equal to approximately 0.2.


Sign in / Sign up

Export Citation Format

Share Document